铬改性硫化镍催化剂可实现高能效的聚对苯二甲酸乙二醇酯电化学升级回收

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jun Qi, Jiachun Li, Xiangtong Meng, Zhanhao Jiang, Zhenhao Wang, Yi Ma, Hongqi Zou, Yadong Du, Zhiqun Lin, Jieshan Qiu
{"title":"铬改性硫化镍催化剂可实现高能效的聚对苯二甲酸乙二醇酯电化学升级回收","authors":"Jun Qi, Jiachun Li, Xiangtong Meng, Zhanhao Jiang, Zhenhao Wang, Yi Ma, Hongqi Zou, Yadong Du, Zhiqun Lin, Jieshan Qiu","doi":"10.1002/aenm.202504208","DOIUrl":null,"url":null,"abstract":"Despite recent stunning progress in electrocatalytic valorization of plastics, it remains a huge challenge to develop highly active electrocatalysts for achieving industrial‐level current density. Herein, a flocculent chromium‐modified nickel sulfide (Cr‐Ni<jats:sub>3</jats:sub>S<jats:sub>2</jats:sub>‐Ni(OH)<jats:sub>2</jats:sub>/NF) immobilizing on nickel foam and scrutinize its electrocatalytic activity for oxidation of ethylene glycol monomers (EOR) of polyethylene terephthalate (PET) is crafted. The Cr‐Ni<jats:sub>3</jats:sub>S<jats:sub>2</jats:sub>‐Ni(OH)<jats:sub>2</jats:sub>/NF catalyst facilitates efficient formate production at an industrial‐level current density of 1200 mA cm<jats:sup>−2</jats:sup>, requiring a record low potential of 1.561 V (vs. RHE). A series of in‐situ spectroscopy in conjunction with theoretical calculations substantiates that the high activity of the catalyst originates from the regulated d‐band center of Ni by Cr and S species. Hybrid electrosynthesis systems coupling EOR and cathodic CO<jats:sub>2</jats:sub> or H<jats:sub>2</jats:sub>O reduction reaction (CO<jats:sub>2</jats:sub>RR or HER) are subsequently assembled. When reaching 400 mA cm<jats:sup>−2</jats:sup>, CO<jats:sub>2</jats:sub>RR//EOR electrolyzer enables coproduction of formate at an impressively low cell voltage of 2.694 V, avoiding ion‐exchange membrane and product crossover. Rigorous techno‐economic evaluation reveals that the attractive profitability of these two electrosynthesis routes reverses the long‐term dilemma of negative profits. This work paves a green and sustainable avenue toward the valorization of low‐grade carbon resources.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"52 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromium‐Modified Nickel Sulfide Catalysts Enable Energy‐Efficient Electrochemical Polyethylene Terephthalate Upcycling\",\"authors\":\"Jun Qi, Jiachun Li, Xiangtong Meng, Zhanhao Jiang, Zhenhao Wang, Yi Ma, Hongqi Zou, Yadong Du, Zhiqun Lin, Jieshan Qiu\",\"doi\":\"10.1002/aenm.202504208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite recent stunning progress in electrocatalytic valorization of plastics, it remains a huge challenge to develop highly active electrocatalysts for achieving industrial‐level current density. Herein, a flocculent chromium‐modified nickel sulfide (Cr‐Ni<jats:sub>3</jats:sub>S<jats:sub>2</jats:sub>‐Ni(OH)<jats:sub>2</jats:sub>/NF) immobilizing on nickel foam and scrutinize its electrocatalytic activity for oxidation of ethylene glycol monomers (EOR) of polyethylene terephthalate (PET) is crafted. The Cr‐Ni<jats:sub>3</jats:sub>S<jats:sub>2</jats:sub>‐Ni(OH)<jats:sub>2</jats:sub>/NF catalyst facilitates efficient formate production at an industrial‐level current density of 1200 mA cm<jats:sup>−2</jats:sup>, requiring a record low potential of 1.561 V (vs. RHE). A series of in‐situ spectroscopy in conjunction with theoretical calculations substantiates that the high activity of the catalyst originates from the regulated d‐band center of Ni by Cr and S species. Hybrid electrosynthesis systems coupling EOR and cathodic CO<jats:sub>2</jats:sub> or H<jats:sub>2</jats:sub>O reduction reaction (CO<jats:sub>2</jats:sub>RR or HER) are subsequently assembled. When reaching 400 mA cm<jats:sup>−2</jats:sup>, CO<jats:sub>2</jats:sub>RR//EOR electrolyzer enables coproduction of formate at an impressively low cell voltage of 2.694 V, avoiding ion‐exchange membrane and product crossover. Rigorous techno‐economic evaluation reveals that the attractive profitability of these two electrosynthesis routes reverses the long‐term dilemma of negative profits. This work paves a green and sustainable avenue toward the valorization of low‐grade carbon resources.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202504208\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202504208","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管最近塑料的电催化增值取得了惊人的进展,但开发高活性电催化剂以达到工业水平的电流密度仍然是一个巨大的挑战。本文研究了一种絮凝剂铬改性硫化镍(Cr‐Ni3S2‐Ni(OH)2/NF)在泡沫镍上的固定化,并考察了其氧化聚对苯二甲酸乙二醇酯(PET)的电催化活性。Cr - Ni3S2 - Ni(OH)2/NF催化剂在1200 mA cm - 2的工业级电流密度下促进了甲酸酯的高效生产,需要创纪录的1.561 V的低电位(相对于RHE)。一系列的原位光谱分析结合理论计算证实,催化剂的高活性源于Cr和S物质对Ni的d波段中心的调节。随后组装了耦合EOR和阴极CO2或H2O还原反应(CO2RR或HER)的混合电合成系统。当达到400 mA cm - 2时,CO2RR//EOR电解槽能够在2.694 V的极低电池电压下协同生产甲酸盐,避免了离子交换膜和产品交叉。严格的技术经济评估表明,这两种电合成路线具有吸引力的盈利能力,扭转了长期的负利润困境。这项工作为低品位碳资源的增值开辟了一条绿色和可持续的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chromium‐Modified Nickel Sulfide Catalysts Enable Energy‐Efficient Electrochemical Polyethylene Terephthalate Upcycling
Despite recent stunning progress in electrocatalytic valorization of plastics, it remains a huge challenge to develop highly active electrocatalysts for achieving industrial‐level current density. Herein, a flocculent chromium‐modified nickel sulfide (Cr‐Ni3S2‐Ni(OH)2/NF) immobilizing on nickel foam and scrutinize its electrocatalytic activity for oxidation of ethylene glycol monomers (EOR) of polyethylene terephthalate (PET) is crafted. The Cr‐Ni3S2‐Ni(OH)2/NF catalyst facilitates efficient formate production at an industrial‐level current density of 1200 mA cm−2, requiring a record low potential of 1.561 V (vs. RHE). A series of in‐situ spectroscopy in conjunction with theoretical calculations substantiates that the high activity of the catalyst originates from the regulated d‐band center of Ni by Cr and S species. Hybrid electrosynthesis systems coupling EOR and cathodic CO2 or H2O reduction reaction (CO2RR or HER) are subsequently assembled. When reaching 400 mA cm−2, CO2RR//EOR electrolyzer enables coproduction of formate at an impressively low cell voltage of 2.694 V, avoiding ion‐exchange membrane and product crossover. Rigorous techno‐economic evaluation reveals that the attractive profitability of these two electrosynthesis routes reverses the long‐term dilemma of negative profits. This work paves a green and sustainable avenue toward the valorization of low‐grade carbon resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信