简单的锌金属颗粒掺杂改变陶瓷骨水泥的治疗性能

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juncen Zhou, Bing Li, Jiayi Zhou, Sai Aishwarya Abasolo, Firoz Akhter, Asma Akhter, Malcolm Xing, Ke Cheng, Donghui Zhu
{"title":"简单的锌金属颗粒掺杂改变陶瓷骨水泥的治疗性能","authors":"Juncen Zhou, Bing Li, Jiayi Zhou, Sai Aishwarya Abasolo, Firoz Akhter, Asma Akhter, Malcolm Xing, Ke Cheng, Donghui Zhu","doi":"10.1002/adfm.202514417","DOIUrl":null,"url":null,"abstract":"Ceramic bone cements are widely utilized for bone defect repair, but their therapeutic effects remain unsatisfying due to their slow degradation, limited bioactivity, and lack of antibacterial properties. This study demonstrates a simple yet effective strategy to transform their performance by doping zinc (Zn), in the form of metal particles, into the bone cement matrix. Zn particle doping endows the cement with hierarchical porosity, sustained Zn<jats:sup>2+</jats:sup> release, and reactive oxygen species generation. The Zn particle‐doped bone cement exhibits potent antibacterial activity against methicillin‐resistant <jats:italic>Staphylococcus aureus</jats:italic>, with mechanistic insights revealed through comparative in vitro and in vivo studies. In a critical‐sized bone defect model, Zn‐doped cement demonstrates superior bioresorption, tissue infiltration, and osteogenic capacity compared to pure cement. Among the tested formulations, cements containing 5–10 wt.% Zn particles achieved the most favorable balance of antibacterial efficacy, degradation, and bone regeneration, thereby representing the most promising candidates for clinical translation. In addition, the pivotal role of the SMAD3 signaling pathway in Zn<jats:sup>2+</jats:sup>‐mediated cell migration and osteogenesis is identified. This study not only delivers a clinically promising ceramic bone cement but also pioneers a versatile and scalable strategy for transforming bone cement properties through Zn biodegradable metal particle doping.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"209 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple Zinc Metallic Particle Doping Transforms Ceramic Bone Cement Therapeutic Performance\",\"authors\":\"Juncen Zhou, Bing Li, Jiayi Zhou, Sai Aishwarya Abasolo, Firoz Akhter, Asma Akhter, Malcolm Xing, Ke Cheng, Donghui Zhu\",\"doi\":\"10.1002/adfm.202514417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ceramic bone cements are widely utilized for bone defect repair, but their therapeutic effects remain unsatisfying due to their slow degradation, limited bioactivity, and lack of antibacterial properties. This study demonstrates a simple yet effective strategy to transform their performance by doping zinc (Zn), in the form of metal particles, into the bone cement matrix. Zn particle doping endows the cement with hierarchical porosity, sustained Zn<jats:sup>2+</jats:sup> release, and reactive oxygen species generation. The Zn particle‐doped bone cement exhibits potent antibacterial activity against methicillin‐resistant <jats:italic>Staphylococcus aureus</jats:italic>, with mechanistic insights revealed through comparative in vitro and in vivo studies. In a critical‐sized bone defect model, Zn‐doped cement demonstrates superior bioresorption, tissue infiltration, and osteogenic capacity compared to pure cement. Among the tested formulations, cements containing 5–10 wt.% Zn particles achieved the most favorable balance of antibacterial efficacy, degradation, and bone regeneration, thereby representing the most promising candidates for clinical translation. In addition, the pivotal role of the SMAD3 signaling pathway in Zn<jats:sup>2+</jats:sup>‐mediated cell migration and osteogenesis is identified. This study not only delivers a clinically promising ceramic bone cement but also pioneers a versatile and scalable strategy for transforming bone cement properties through Zn biodegradable metal particle doping.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"209 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202514417\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202514417","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

陶瓷骨水泥被广泛应用于骨缺损修复,但由于其降解缓慢、生物活性有限、缺乏抗菌性能,其治疗效果尚不理想。本研究展示了一种简单而有效的策略,通过将金属颗粒形式的锌(Zn)掺杂到骨水泥基质中来改变它们的性能。锌颗粒的掺入使水泥具有分层孔隙度、Zn2+的持续释放和活性氧的生成。锌颗粒掺杂骨水泥对耐甲氧西林金黄色葡萄球菌表现出强大的抗菌活性,通过体外和体内比较研究揭示了其机制。在临界尺寸骨缺损模型中,与纯水泥相比,锌掺杂水泥表现出更好的生物吸收、组织浸润和成骨能力。在所测试的配方中,含有5-10 wt.% Zn颗粒的水泥在抗菌功效、降解和骨再生方面取得了最有利的平衡,因此代表了最有希望用于临床转化的候选者。此外,SMAD3信号通路在Zn2+介导的细胞迁移和成骨过程中发挥了关键作用。这项研究不仅提供了一种具有临床前景的陶瓷骨水泥,而且开创了一种通用的、可扩展的策略,通过锌可生物降解的金属颗粒掺杂来改变骨水泥的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Zinc Metallic Particle Doping Transforms Ceramic Bone Cement Therapeutic Performance
Ceramic bone cements are widely utilized for bone defect repair, but their therapeutic effects remain unsatisfying due to their slow degradation, limited bioactivity, and lack of antibacterial properties. This study demonstrates a simple yet effective strategy to transform their performance by doping zinc (Zn), in the form of metal particles, into the bone cement matrix. Zn particle doping endows the cement with hierarchical porosity, sustained Zn2+ release, and reactive oxygen species generation. The Zn particle‐doped bone cement exhibits potent antibacterial activity against methicillin‐resistant Staphylococcus aureus, with mechanistic insights revealed through comparative in vitro and in vivo studies. In a critical‐sized bone defect model, Zn‐doped cement demonstrates superior bioresorption, tissue infiltration, and osteogenic capacity compared to pure cement. Among the tested formulations, cements containing 5–10 wt.% Zn particles achieved the most favorable balance of antibacterial efficacy, degradation, and bone regeneration, thereby representing the most promising candidates for clinical translation. In addition, the pivotal role of the SMAD3 signaling pathway in Zn2+‐mediated cell migration and osteogenesis is identified. This study not only delivers a clinically promising ceramic bone cement but also pioneers a versatile and scalable strategy for transforming bone cement properties through Zn biodegradable metal particle doping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信