用原位生长的纳米花状Ni/Co双金属mof制备的低曲率木衍生高容量厚电极用于镍锌水电池

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shu Feng, Junhao Liu, Langjian Zhao, Xiaoxu Ma, Chaozheng Liu, Shaohua Jiang, Shuijian He, Fengshan Zhang, Huining Xiao, Jingquan Han, Weisheng Yang
{"title":"用原位生长的纳米花状Ni/Co双金属mof制备的低曲率木衍生高容量厚电极用于镍锌水电池","authors":"Shu Feng, Junhao Liu, Langjian Zhao, Xiaoxu Ma, Chaozheng Liu, Shaohua Jiang, Shuijian He, Fengshan Zhang, Huining Xiao, Jingquan Han, Weisheng Yang","doi":"10.1002/adfm.202522595","DOIUrl":null,"url":null,"abstract":"Nickel–Zinc Battery (NZB) faces a dual bottleneck: limited mass loading capacity stemming from its electrode structure and capacity degradation caused by Ni lattice rotation during charging and discharging. Herein, this study develops a porous carbon current collector with low curvature based on natural wood to optimize the electrode structure, thereby increasing the loading of active substances and significantly accelerating the ion transport kinetics in thick electrodes. Meanwhile, Nickel/Cobal bimetallic metal‐organic framework (Ni/Co‐MOF), serving as active materials, is in situ grown on carbonized wood (CW), which modulates the electronic structure and coordination environment, thereby stabilizing the M‐H2‐H3 phase transition and mitigating stress and lattice degradation. The constructed self‐supported Ni/Co‐MOF@CW (N<jats:sub>4</jats:sub>C<jats:sub>1</jats:sub>M@CW‐N2) electrode exhibits a high areal capacity of 1.71 mAh cm<jats:sup>−2</jats:sup> at a current density of 5 mA cm<jats:sup>−2</jats:sup>, with a high active substance loading of 12.3 mg cm<jats:sup>−2</jats:sup>. In addition, the assembled Ni/Co‐MOF@CW//Zn (N<jats:sub>4</jats:sub>C<jats:sub>1</jats:sub>M@CW‐N2//Zn) battery demonstrates excellent electrochemical performance with an energy density of 3.54 mWh cm<jats:sup>−2</jats:sup> at a power density of 70.34 mW cm<jats:sup>−2</jats:sup>. And after 8000 cycles, the capacity retention rate is as high as 88.9%. The synthetic strategy combining a self‐supported wood‐derived electrode with Ni/Co‐MOF provides new directions for the next generation of high‐performance electrochemical energy storage devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"52 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low‐Curvature Wood‐Derived Thick Electrodes with High Capacity via In Situ Grown Nanoflower‐Like Ni/Co Bimetallic MOFs for Aqueous Nickel–Zinc Battery\",\"authors\":\"Shu Feng, Junhao Liu, Langjian Zhao, Xiaoxu Ma, Chaozheng Liu, Shaohua Jiang, Shuijian He, Fengshan Zhang, Huining Xiao, Jingquan Han, Weisheng Yang\",\"doi\":\"10.1002/adfm.202522595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nickel–Zinc Battery (NZB) faces a dual bottleneck: limited mass loading capacity stemming from its electrode structure and capacity degradation caused by Ni lattice rotation during charging and discharging. Herein, this study develops a porous carbon current collector with low curvature based on natural wood to optimize the electrode structure, thereby increasing the loading of active substances and significantly accelerating the ion transport kinetics in thick electrodes. Meanwhile, Nickel/Cobal bimetallic metal‐organic framework (Ni/Co‐MOF), serving as active materials, is in situ grown on carbonized wood (CW), which modulates the electronic structure and coordination environment, thereby stabilizing the M‐H2‐H3 phase transition and mitigating stress and lattice degradation. The constructed self‐supported Ni/Co‐MOF@CW (N<jats:sub>4</jats:sub>C<jats:sub>1</jats:sub>M@CW‐N2) electrode exhibits a high areal capacity of 1.71 mAh cm<jats:sup>−2</jats:sup> at a current density of 5 mA cm<jats:sup>−2</jats:sup>, with a high active substance loading of 12.3 mg cm<jats:sup>−2</jats:sup>. In addition, the assembled Ni/Co‐MOF@CW//Zn (N<jats:sub>4</jats:sub>C<jats:sub>1</jats:sub>M@CW‐N2//Zn) battery demonstrates excellent electrochemical performance with an energy density of 3.54 mWh cm<jats:sup>−2</jats:sup> at a power density of 70.34 mW cm<jats:sup>−2</jats:sup>. And after 8000 cycles, the capacity retention rate is as high as 88.9%. The synthetic strategy combining a self‐supported wood‐derived electrode with Ni/Co‐MOF provides new directions for the next generation of high‐performance electrochemical energy storage devices.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202522595\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202522595","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镍锌电池(NZB)面临着双重瓶颈:电极结构导致的质量负载能力有限和充放电过程中Ni晶格旋转导致的容量下降。为此,本研究开发了一种基于天然木材的低曲率多孔碳集流器,对电极结构进行了优化,从而增加了活性物质的负载,显著加快了厚电极中的离子传输动力学。同时,镍/钴双金属有机骨架(Ni/Co - MOF)作为活性材料,在炭化木材(CW)上原位生长,调节了电子结构和配位环境,从而稳定了M - H2 - H3相变,减轻了应力和晶格退化。构建的自支撑Ni/Co‐MOF@CW (N4C1M@CW‐N2)电极在电流密度为5 mA cm−2时显示出1.71 mAh cm−2的高面积容量,具有12.3 mg cm−2的高活性物质负载。此外,组装的Ni/Co‐MOF@CW//Zn (N4C1M@CW‐N2//Zn)电池在功率密度为70.34 mW cm−2时,能量密度为3.54 mWh cm−2,表现出优异的电化学性能。经过8000次循环后,容量保留率高达88.9%。将自支撑木源电极与Ni/Co - MOF相结合的合成策略为下一代高性能电化学储能装置提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low‐Curvature Wood‐Derived Thick Electrodes with High Capacity via In Situ Grown Nanoflower‐Like Ni/Co Bimetallic MOFs for Aqueous Nickel–Zinc Battery
Nickel–Zinc Battery (NZB) faces a dual bottleneck: limited mass loading capacity stemming from its electrode structure and capacity degradation caused by Ni lattice rotation during charging and discharging. Herein, this study develops a porous carbon current collector with low curvature based on natural wood to optimize the electrode structure, thereby increasing the loading of active substances and significantly accelerating the ion transport kinetics in thick electrodes. Meanwhile, Nickel/Cobal bimetallic metal‐organic framework (Ni/Co‐MOF), serving as active materials, is in situ grown on carbonized wood (CW), which modulates the electronic structure and coordination environment, thereby stabilizing the M‐H2‐H3 phase transition and mitigating stress and lattice degradation. The constructed self‐supported Ni/Co‐MOF@CW (N4C1M@CW‐N2) electrode exhibits a high areal capacity of 1.71 mAh cm−2 at a current density of 5 mA cm−2, with a high active substance loading of 12.3 mg cm−2. In addition, the assembled Ni/Co‐MOF@CW//Zn (N4C1M@CW‐N2//Zn) battery demonstrates excellent electrochemical performance with an energy density of 3.54 mWh cm−2 at a power density of 70.34 mW cm−2. And after 8000 cycles, the capacity retention rate is as high as 88.9%. The synthetic strategy combining a self‐supported wood‐derived electrode with Ni/Co‐MOF provides new directions for the next generation of high‐performance electrochemical energy storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信