烘烤后诱导的自锁互穿网络增强了3D打印聚酰亚胺结构的热性能和机械性能

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiachen Wan, Zihui Liu, Jiaheng Luo, Xiaojie He, Jianan Yuan, Qinghua Lu
{"title":"烘烤后诱导的自锁互穿网络增强了3D打印聚酰亚胺结构的热性能和机械性能","authors":"Jiachen Wan, Zihui Liu, Jiaheng Luo, Xiaojie He, Jianan Yuan, Qinghua Lu","doi":"10.1002/adfm.202509734","DOIUrl":null,"url":null,"abstract":"Addressing the inherent challenges of weak interlayer bonding and anisotropic mechanical properties in layer‐by‐layer fabrication processing is pivotal for mitigating the brittleness of 3D‐printed structures and enhancing their heat deflection temperature (HDT). In this study, molecular engineering strategies are employed to design and synthesize novel high‐performance photosensitive polyimide inks, incorporating both methacrylate (photo‐curable) and benzoxazine (thermal cross‐linkable) functional groups. During the 3D printing process, ultraviolet exposure initiates the photopolymerization of methacrylate, forming flexible covalent networks. Subsequent thermal treatment induces the ring‐opening polymerization of benzoxazine, resulting in the formation of a rigid phenolic‐aromatic network that shuttles the 3D architecture. Mechanistic investigations reveal that the development of a dual interpenetrating network comprising both soft and hard phases significantly enhances interlayer bonding and eliminates anisotropy in printed materials. Consequently, the 3D polyimide structures exhibit exceptional thermal stability under load (HDT > 165 °C), superior isotropic mechanical properties (elastic modulus > 1.1 GPa, and elongation at break > 8.5 %), and high dimensional accuracy (shrinkage <1%). This approach establishes a general platform for the rapid fabrication of high‐performance 3D structures with robust interlayer connectivity, offering a promising solution to the limitations of conventional additive manufacturing techniques.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"1 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post‐Baking‐Induced Self‐Locking Interpenetrating Networks Strengthen 3D‐Printed Polyimide Architectures With Enhanced Thermal and Mechanical Properties\",\"authors\":\"Jiachen Wan, Zihui Liu, Jiaheng Luo, Xiaojie He, Jianan Yuan, Qinghua Lu\",\"doi\":\"10.1002/adfm.202509734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the inherent challenges of weak interlayer bonding and anisotropic mechanical properties in layer‐by‐layer fabrication processing is pivotal for mitigating the brittleness of 3D‐printed structures and enhancing their heat deflection temperature (HDT). In this study, molecular engineering strategies are employed to design and synthesize novel high‐performance photosensitive polyimide inks, incorporating both methacrylate (photo‐curable) and benzoxazine (thermal cross‐linkable) functional groups. During the 3D printing process, ultraviolet exposure initiates the photopolymerization of methacrylate, forming flexible covalent networks. Subsequent thermal treatment induces the ring‐opening polymerization of benzoxazine, resulting in the formation of a rigid phenolic‐aromatic network that shuttles the 3D architecture. Mechanistic investigations reveal that the development of a dual interpenetrating network comprising both soft and hard phases significantly enhances interlayer bonding and eliminates anisotropy in printed materials. Consequently, the 3D polyimide structures exhibit exceptional thermal stability under load (HDT > 165 °C), superior isotropic mechanical properties (elastic modulus > 1.1 GPa, and elongation at break > 8.5 %), and high dimensional accuracy (shrinkage <1%). This approach establishes a general platform for the rapid fabrication of high‐performance 3D structures with robust interlayer connectivity, offering a promising solution to the limitations of conventional additive manufacturing techniques.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202509734\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509734","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在逐层制造过程中,解决层间键合薄弱和各向异性力学性能的固有挑战,对于减轻3D打印结构的脆性和提高其热挠曲温度(HDT)至关重要。在这项研究中,采用分子工程策略来设计和合成新型高性能光敏聚酰亚胺油墨,其中包含甲基丙烯酸酯(光固化)和苯并恶嗪(热交联)官能团。在3D打印过程中,紫外线照射引发甲基丙烯酸酯的光聚合,形成柔性共价网络。随后的热处理诱导苯并恶嗪的开环聚合,导致形成刚性的酚醛-芳香网络,穿梭于三维结构中。力学研究表明,由软相和硬相组成的双互穿网络的发展显著增强了层间键合,消除了印刷材料的各向异性。因此,3D聚酰亚胺结构在负载下表现出优异的热稳定性(HDT > 165°C),优越的各向同性力学性能(弹性模量>; 1.1 GPa,断裂伸长率>; 8.5%)和高尺寸精度(收缩率<;1%)。这种方法为快速制造高性能3D结构建立了一个通用平台,具有强大的层间连接,为传统增材制造技术的局限性提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Post‐Baking‐Induced Self‐Locking Interpenetrating Networks Strengthen 3D‐Printed Polyimide Architectures With Enhanced Thermal and Mechanical Properties
Addressing the inherent challenges of weak interlayer bonding and anisotropic mechanical properties in layer‐by‐layer fabrication processing is pivotal for mitigating the brittleness of 3D‐printed structures and enhancing their heat deflection temperature (HDT). In this study, molecular engineering strategies are employed to design and synthesize novel high‐performance photosensitive polyimide inks, incorporating both methacrylate (photo‐curable) and benzoxazine (thermal cross‐linkable) functional groups. During the 3D printing process, ultraviolet exposure initiates the photopolymerization of methacrylate, forming flexible covalent networks. Subsequent thermal treatment induces the ring‐opening polymerization of benzoxazine, resulting in the formation of a rigid phenolic‐aromatic network that shuttles the 3D architecture. Mechanistic investigations reveal that the development of a dual interpenetrating network comprising both soft and hard phases significantly enhances interlayer bonding and eliminates anisotropy in printed materials. Consequently, the 3D polyimide structures exhibit exceptional thermal stability under load (HDT > 165 °C), superior isotropic mechanical properties (elastic modulus > 1.1 GPa, and elongation at break > 8.5 %), and high dimensional accuracy (shrinkage <1%). This approach establishes a general platform for the rapid fabrication of high‐performance 3D structures with robust interlayer connectivity, offering a promising solution to the limitations of conventional additive manufacturing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信