拉伸极限:从平面-双轴应力-拉伸到动脉压力-直径。

IF 1.7 4区 医学 Q4 BIOPHYSICS
Thibault Vervenne, Nic Vermeeren, Nele Demeersseman, Heleen Fehervary, Mathias Peirlinck, Ellen Kuhl, Nele Famaey
{"title":"拉伸极限:从平面-双轴应力-拉伸到动脉压力-直径。","authors":"Thibault Vervenne, Nic Vermeeren, Nele Demeersseman, Heleen Fehervary, Mathias Peirlinck, Ellen Kuhl, Nele Famaey","doi":"10.1115/1.4070124","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the physiological condition of the vascular system is critical to explain, treat, and manage vascular disease. Numerous experimental and computational studies characterize the mechanical behavior of arterial tissue under controlled laboratory conditions. However, translating this knowledge into physiologically realistic conditions remains challenging. Key difficulties include selecting suitable and relevant test methods, minimizing uncertainty, and ensuring robust model validation. We present a novel integrative approach to translate laboratory experiments on arterial samples into clinically relevant pressure-diameter behavior. We perform controlled planar-biaxial tests on carotid arteries under three stretch ratios and generate axial and circumferential stress?stretch data to calibrate a fiber-reinforced soft tissue model. Using an analytical thick-walled cylindrical model, we predict subject-specific pressure-diameter behavior, informed by arterial prestretches from ring opening experiments. We systematically compare predictions against extension-inflation experiments on tubes from the same artery by applying controlled pairs of axial stretch and inner pressure, while recording outer diameter. We quantify prediction error in absolute and relative stretch regimes and evaluate the importance of the load-free reference dimensions. Results show how planar-biaxial tests probe different stretch regimes compared to extension-inflation deformations, leading to extrapolation of model predictions. We demonstrate how the constitutive material parameters can be fitted to different biomechanical loading conditions and assess the sensitivity of the simulations to axial stretch and circumferential prestretch. Only when key model parameters are accurately captured and their uncertainty propagated, planar-biaxial stress-stretch data can reliably predict arterial pressure?diameter behavior.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-33"},"PeriodicalIF":1.7000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stretching the Limits: From Planar-Biaxial Stress-Stretch to Arterial Pressure-Diameter.\",\"authors\":\"Thibault Vervenne, Nic Vermeeren, Nele Demeersseman, Heleen Fehervary, Mathias Peirlinck, Ellen Kuhl, Nele Famaey\",\"doi\":\"10.1115/1.4070124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the physiological condition of the vascular system is critical to explain, treat, and manage vascular disease. Numerous experimental and computational studies characterize the mechanical behavior of arterial tissue under controlled laboratory conditions. However, translating this knowledge into physiologically realistic conditions remains challenging. Key difficulties include selecting suitable and relevant test methods, minimizing uncertainty, and ensuring robust model validation. We present a novel integrative approach to translate laboratory experiments on arterial samples into clinically relevant pressure-diameter behavior. We perform controlled planar-biaxial tests on carotid arteries under three stretch ratios and generate axial and circumferential stress?stretch data to calibrate a fiber-reinforced soft tissue model. Using an analytical thick-walled cylindrical model, we predict subject-specific pressure-diameter behavior, informed by arterial prestretches from ring opening experiments. We systematically compare predictions against extension-inflation experiments on tubes from the same artery by applying controlled pairs of axial stretch and inner pressure, while recording outer diameter. We quantify prediction error in absolute and relative stretch regimes and evaluate the importance of the load-free reference dimensions. Results show how planar-biaxial tests probe different stretch regimes compared to extension-inflation deformations, leading to extrapolation of model predictions. We demonstrate how the constitutive material parameters can be fitted to different biomechanical loading conditions and assess the sensitivity of the simulations to axial stretch and circumferential prestretch. Only when key model parameters are accurately captured and their uncertainty propagated, planar-biaxial stress-stretch data can reliably predict arterial pressure?diameter behavior.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"1-33\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4070124\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4070124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

了解血管系统的生理状况是解释、治疗和管理血管疾病的关键。大量的实验和计算研究在受控的实验室条件下描述了动脉组织的力学行为。然而,将这些知识转化为生理上的现实条件仍然具有挑战性。关键的困难包括选择合适的和相关的测试方法,最小化不确定性,并确保稳健的模型验证。我们提出了一种新的综合方法,将动脉样本的实验室实验转化为临床相关的压力-直径行为。我们在三种拉伸比下对颈动脉进行平面-双轴对照试验,并产生轴向和周向应力。拉伸数据校准纤维增强软组织模型。使用分析厚壁圆柱形模型,我们预测受试者特定的压力-直径行为,由环打开实验的动脉预拉伸告知。我们在记录外径的同时,通过控制轴向拉伸和内部压力,系统地将预测结果与来自同一动脉的管子的拉伸-膨胀实验进行比较。我们量化了绝对和相对拉伸状态下的预测误差,并评估了无载荷参考尺寸的重要性。结果显示,与拉伸-膨胀变形相比,平面-双轴测试如何探测不同的拉伸状态,从而推断出模型预测。我们演示了如何将本构材料参数拟合到不同的生物力学载荷条件下,并评估了模拟对轴向拉伸和周向预拉伸的敏感性。只有当关键模型参数被准确捕获并传播其不确定性时,平面-双轴应力-拉伸数据才能可靠地预测动脉压。直径的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stretching the Limits: From Planar-Biaxial Stress-Stretch to Arterial Pressure-Diameter.

Understanding the physiological condition of the vascular system is critical to explain, treat, and manage vascular disease. Numerous experimental and computational studies characterize the mechanical behavior of arterial tissue under controlled laboratory conditions. However, translating this knowledge into physiologically realistic conditions remains challenging. Key difficulties include selecting suitable and relevant test methods, minimizing uncertainty, and ensuring robust model validation. We present a novel integrative approach to translate laboratory experiments on arterial samples into clinically relevant pressure-diameter behavior. We perform controlled planar-biaxial tests on carotid arteries under three stretch ratios and generate axial and circumferential stress?stretch data to calibrate a fiber-reinforced soft tissue model. Using an analytical thick-walled cylindrical model, we predict subject-specific pressure-diameter behavior, informed by arterial prestretches from ring opening experiments. We systematically compare predictions against extension-inflation experiments on tubes from the same artery by applying controlled pairs of axial stretch and inner pressure, while recording outer diameter. We quantify prediction error in absolute and relative stretch regimes and evaluate the importance of the load-free reference dimensions. Results show how planar-biaxial tests probe different stretch regimes compared to extension-inflation deformations, leading to extrapolation of model predictions. We demonstrate how the constitutive material parameters can be fitted to different biomechanical loading conditions and assess the sensitivity of the simulations to axial stretch and circumferential prestretch. Only when key model parameters are accurately captured and their uncertainty propagated, planar-biaxial stress-stretch data can reliably predict arterial pressure?diameter behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信