帕金森病早期副交感神经功能障碍:来自信息理论分析的见解。

IF 3
Frontiers in network physiology Pub Date : 2025-09-26 eCollection Date: 2025-01-01 DOI:10.3389/fnetp.2025.1680069
Jana Cernanova Krohova, Jana Oleksakova, Zuzana Turianikova, Barbora Czippelova, Milan Grofik, Egon Kurca, Michal Javorka
{"title":"帕金森病早期副交感神经功能障碍:来自信息理论分析的见解。","authors":"Jana Cernanova Krohova, Jana Oleksakova, Zuzana Turianikova, Barbora Czippelova, Milan Grofik, Egon Kurca, Michal Javorka","doi":"10.3389/fnetp.2025.1680069","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Parasympathetic nervous system (PNS) dysfunction in Parkinson's disease (PD) has been frequently evaluated using heart rate variability (HRV) analysis in the time and frequency domains. Findings across studies have been inconsistent, limiting a unified understanding of early autonomic impairment.</p><p><strong>Methods: </strong>In this study, we applied both conventional and advanced analytical methods to evaluate cardiovascular PNS function in the early-stage PD patients. Sixteen individuals with PD (<6 months after motor signs occurrence) and sixteen age- and sex-matched healthy controls were assessed across three protocol phases (supine rest, head-up tilt, and supine recovery). Traditional HRV analysis in the high-frequency band was used to estimate the overall respiratory heart rate variability (RespHRV; updated and more appropriate term for the respiration-related heart rate oscillations formerly called respiratory sinus arrhythmia, RSA) magnitude. To distinguish between baroreflex-mediated and non-baroreflex RespHRV mechanisms, we employed multiscale Partial Information Decomposition (PID), an information-theoretic method. Cardiac baroreflex sensitivity (BRS), reflecting reflex parasympathetic control, was assessed using a causal estimation approach, further supported by a PID-derived parameter quantifying coupling between systolic arterial pressure and R-R intervals. Additionally, the presence of constipation - a clinically relevant non-motor symptom indicative of parasympathetic dysfunction was used to stratify the PD cohort.</p><p><strong>Results: </strong>Early-stage PD patients exhibited signs of parasympathetic impairment, particularly during orthostatic stress. HRV analysis showed reduced HF power during head-up tilt, while causal BRS was significantly lower across all protocol phases in the PD group. PID analysis further demonstrated a significant reduction in baroreflex-mediated mechanism of RespHRV during head-up tilt in PD patients compared with healthy controls, indicating early dysfunction of the cardiac chronotropic baroreflex. This impairment was more pronounced in the group with gastrointestinal issues (with the presence of constipation).</p><p><strong>Discussion: </strong>These findings support the α-Synuclein Origin site and Connectome model, which proposes that PD patients whose neurodegeneration originates in the peripheral autonomic nervous system are characterized by early and more severe autonomic dysfunction.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"5 ","pages":"1680069"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511034/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early parasympathetic dysfunction in Parkinson's disease: insights from information-theoretic analysis.\",\"authors\":\"Jana Cernanova Krohova, Jana Oleksakova, Zuzana Turianikova, Barbora Czippelova, Milan Grofik, Egon Kurca, Michal Javorka\",\"doi\":\"10.3389/fnetp.2025.1680069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Parasympathetic nervous system (PNS) dysfunction in Parkinson's disease (PD) has been frequently evaluated using heart rate variability (HRV) analysis in the time and frequency domains. Findings across studies have been inconsistent, limiting a unified understanding of early autonomic impairment.</p><p><strong>Methods: </strong>In this study, we applied both conventional and advanced analytical methods to evaluate cardiovascular PNS function in the early-stage PD patients. Sixteen individuals with PD (<6 months after motor signs occurrence) and sixteen age- and sex-matched healthy controls were assessed across three protocol phases (supine rest, head-up tilt, and supine recovery). Traditional HRV analysis in the high-frequency band was used to estimate the overall respiratory heart rate variability (RespHRV; updated and more appropriate term for the respiration-related heart rate oscillations formerly called respiratory sinus arrhythmia, RSA) magnitude. To distinguish between baroreflex-mediated and non-baroreflex RespHRV mechanisms, we employed multiscale Partial Information Decomposition (PID), an information-theoretic method. Cardiac baroreflex sensitivity (BRS), reflecting reflex parasympathetic control, was assessed using a causal estimation approach, further supported by a PID-derived parameter quantifying coupling between systolic arterial pressure and R-R intervals. Additionally, the presence of constipation - a clinically relevant non-motor symptom indicative of parasympathetic dysfunction was used to stratify the PD cohort.</p><p><strong>Results: </strong>Early-stage PD patients exhibited signs of parasympathetic impairment, particularly during orthostatic stress. HRV analysis showed reduced HF power during head-up tilt, while causal BRS was significantly lower across all protocol phases in the PD group. PID analysis further demonstrated a significant reduction in baroreflex-mediated mechanism of RespHRV during head-up tilt in PD patients compared with healthy controls, indicating early dysfunction of the cardiac chronotropic baroreflex. This impairment was more pronounced in the group with gastrointestinal issues (with the presence of constipation).</p><p><strong>Discussion: </strong>These findings support the α-Synuclein Origin site and Connectome model, which proposes that PD patients whose neurodegeneration originates in the peripheral autonomic nervous system are characterized by early and more severe autonomic dysfunction.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":\"5 \",\"pages\":\"1680069\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511034/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2025.1680069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2025.1680069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导语:帕金森病(PD)的副交感神经系统(PNS)功能障碍经常使用心率变异性(HRV)分析在时间和频率域进行评估。研究结果不一致,限制了对早期自主神经损伤的统一理解。方法:在本研究中,我们采用传统和先进的分析方法来评估早期PD患者的心血管PNS功能。16例PD患者(结果:早期PD患者表现出副交感神经损伤的迹象,特别是在直立应激时。HRV分析显示,在平视倾斜期间HF功率降低,而PD组的因果BRS在所有方案阶段均显着降低。PID分析进一步表明,与健康对照组相比,PD患者平视倾斜时,压力反射介导的RespHRV机制显著降低,提示心脏变时压力反射早期功能障碍。这种损伤在有胃肠道问题(便秘)的人群中更为明显。讨论:这些发现支持α-Synuclein起源位点和连接组模型,提示PD患者神经退行性病变起源于外周自主神经系统,其自主神经功能障碍早期且更严重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early parasympathetic dysfunction in Parkinson's disease: insights from information-theoretic analysis.

Introduction: Parasympathetic nervous system (PNS) dysfunction in Parkinson's disease (PD) has been frequently evaluated using heart rate variability (HRV) analysis in the time and frequency domains. Findings across studies have been inconsistent, limiting a unified understanding of early autonomic impairment.

Methods: In this study, we applied both conventional and advanced analytical methods to evaluate cardiovascular PNS function in the early-stage PD patients. Sixteen individuals with PD (<6 months after motor signs occurrence) and sixteen age- and sex-matched healthy controls were assessed across three protocol phases (supine rest, head-up tilt, and supine recovery). Traditional HRV analysis in the high-frequency band was used to estimate the overall respiratory heart rate variability (RespHRV; updated and more appropriate term for the respiration-related heart rate oscillations formerly called respiratory sinus arrhythmia, RSA) magnitude. To distinguish between baroreflex-mediated and non-baroreflex RespHRV mechanisms, we employed multiscale Partial Information Decomposition (PID), an information-theoretic method. Cardiac baroreflex sensitivity (BRS), reflecting reflex parasympathetic control, was assessed using a causal estimation approach, further supported by a PID-derived parameter quantifying coupling between systolic arterial pressure and R-R intervals. Additionally, the presence of constipation - a clinically relevant non-motor symptom indicative of parasympathetic dysfunction was used to stratify the PD cohort.

Results: Early-stage PD patients exhibited signs of parasympathetic impairment, particularly during orthostatic stress. HRV analysis showed reduced HF power during head-up tilt, while causal BRS was significantly lower across all protocol phases in the PD group. PID analysis further demonstrated a significant reduction in baroreflex-mediated mechanism of RespHRV during head-up tilt in PD patients compared with healthy controls, indicating early dysfunction of the cardiac chronotropic baroreflex. This impairment was more pronounced in the group with gastrointestinal issues (with the presence of constipation).

Discussion: These findings support the α-Synuclein Origin site and Connectome model, which proposes that PD patients whose neurodegeneration originates in the peripheral autonomic nervous system are characterized by early and more severe autonomic dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信