基于定量的深度学习决策的可解释人工智能:肝细胞癌鉴别定量形态学特征的聚类和可视化。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-11-01 Epub Date: 2025-10-11 DOI:10.1117/1.JMI.12.6.061407
Gen Takagi, Saori Takeyama, Tokiya Abe, Akinori Hashiguchi, Michiie Sakamoto, Kenji Suzuki, Masahiro Yamaguchi
{"title":"基于定量的深度学习决策的可解释人工智能:肝细胞癌鉴别定量形态学特征的聚类和可视化。","authors":"Gen Takagi, Saori Takeyama, Tokiya Abe, Akinori Hashiguchi, Michiie Sakamoto, Kenji Suzuki, Masahiro Yamaguchi","doi":"10.1117/1.JMI.12.6.061407","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Deep learning (DL) is rapidly advancing in computational pathology, offering high diagnostic accuracy but often functioning as a \"black box\" with limited interpretability. This lack of transparency hinders its clinical adoption, emphasizing the need for quantitative explainable artificial intelligence (QXAI) methods. We propose a QXAI approach to objectively and quantitatively elucidate the reasoning behind DL model decisions in hepatocellular carcinoma (HCC) pathological image analysis.</p><p><strong>Approach: </strong>The proposed method utilizes clustering in the latent space of embeddings generated by a DL model to identify regions that contribute to the model's discrimination. Each cluster is then quantitatively characterized by morphometric features obtained through nuclear segmentation using HoverNet and key feature selection with LightGBM. Statistical analysis is performed to assess the importance of selected features, ensuring an interpretable relationship between morphological characteristics and classification outcomes. This approach enables the quantitative interpretation of which regions and features are critical for the model's decision-making, without sacrificing accuracy.</p><p><strong>Results: </strong>Experiments on pathology images of hematoxylin-and-eosin-stained HCC tissue sections showed that the proposed method effectively identified key discriminatory regions and features, such as nuclear size, chromatin density, and shape irregularity. The clustering-based analysis provided structured insights into morphological patterns influencing classification, with explanations evaluated as clinically relevant and interpretable by a pathologist.</p><p><strong>Conclusions: </strong>Our QXAI framework enhances the interpretability of DL-based pathology analysis by linking morphological features to classification decisions. This fosters trust in DL models and facilitates their clinical integration.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 6","pages":"061407"},"PeriodicalIF":1.7000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12513858/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantification-based explainable artificial intelligence for deep learning decisions: clustering and visualization of quantitative morphometric features in hepatocellular carcinoma discrimination.\",\"authors\":\"Gen Takagi, Saori Takeyama, Tokiya Abe, Akinori Hashiguchi, Michiie Sakamoto, Kenji Suzuki, Masahiro Yamaguchi\",\"doi\":\"10.1117/1.JMI.12.6.061407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Deep learning (DL) is rapidly advancing in computational pathology, offering high diagnostic accuracy but often functioning as a \\\"black box\\\" with limited interpretability. This lack of transparency hinders its clinical adoption, emphasizing the need for quantitative explainable artificial intelligence (QXAI) methods. We propose a QXAI approach to objectively and quantitatively elucidate the reasoning behind DL model decisions in hepatocellular carcinoma (HCC) pathological image analysis.</p><p><strong>Approach: </strong>The proposed method utilizes clustering in the latent space of embeddings generated by a DL model to identify regions that contribute to the model's discrimination. Each cluster is then quantitatively characterized by morphometric features obtained through nuclear segmentation using HoverNet and key feature selection with LightGBM. Statistical analysis is performed to assess the importance of selected features, ensuring an interpretable relationship between morphological characteristics and classification outcomes. This approach enables the quantitative interpretation of which regions and features are critical for the model's decision-making, without sacrificing accuracy.</p><p><strong>Results: </strong>Experiments on pathology images of hematoxylin-and-eosin-stained HCC tissue sections showed that the proposed method effectively identified key discriminatory regions and features, such as nuclear size, chromatin density, and shape irregularity. The clustering-based analysis provided structured insights into morphological patterns influencing classification, with explanations evaluated as clinically relevant and interpretable by a pathologist.</p><p><strong>Conclusions: </strong>Our QXAI framework enhances the interpretability of DL-based pathology analysis by linking morphological features to classification decisions. This fosters trust in DL models and facilitates their clinical integration.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 6\",\"pages\":\"061407\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12513858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.6.061407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.6.061407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:深度学习(DL)在计算病理学中迅速发展,提供高诊断准确性,但通常作为“黑匣子”,具有有限的可解释性。缺乏透明度阻碍了其临床应用,强调需要定量可解释的人工智能(QXAI)方法。我们提出了一种QXAI方法来客观和定量地阐明肝细胞癌(HCC)病理图像分析中DL模型决策背后的原因。方法:该方法利用深度学习模型生成的嵌入的潜在空间中的聚类来识别有助于模型识别的区域。然后通过HoverNet核分割和LightGBM关键特征选择获得的形态特征对每个聚类进行定量表征。进行统计分析以评估所选特征的重要性,确保形态特征和分类结果之间的可解释关系。这种方法能够定量解释哪些区域和特征对模型的决策至关重要,而不牺牲准确性。结果:苏木精和伊红染色的HCC组织切片病理图像实验表明,该方法可以有效识别出关键的区分区域和特征,如细胞核大小、染色质密度和形状不规则性。基于聚类的分析为影响分类的形态模式提供了结构化的见解,病理学家对其解释进行了临床相关和可解释的评估。结论:我们的QXAI框架通过将形态学特征与分类决策联系起来,增强了基于dl的病理分析的可解释性。这促进了对DL模型的信任,并促进了它们的临床整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification-based explainable artificial intelligence for deep learning decisions: clustering and visualization of quantitative morphometric features in hepatocellular carcinoma discrimination.

Purpose: Deep learning (DL) is rapidly advancing in computational pathology, offering high diagnostic accuracy but often functioning as a "black box" with limited interpretability. This lack of transparency hinders its clinical adoption, emphasizing the need for quantitative explainable artificial intelligence (QXAI) methods. We propose a QXAI approach to objectively and quantitatively elucidate the reasoning behind DL model decisions in hepatocellular carcinoma (HCC) pathological image analysis.

Approach: The proposed method utilizes clustering in the latent space of embeddings generated by a DL model to identify regions that contribute to the model's discrimination. Each cluster is then quantitatively characterized by morphometric features obtained through nuclear segmentation using HoverNet and key feature selection with LightGBM. Statistical analysis is performed to assess the importance of selected features, ensuring an interpretable relationship between morphological characteristics and classification outcomes. This approach enables the quantitative interpretation of which regions and features are critical for the model's decision-making, without sacrificing accuracy.

Results: Experiments on pathology images of hematoxylin-and-eosin-stained HCC tissue sections showed that the proposed method effectively identified key discriminatory regions and features, such as nuclear size, chromatin density, and shape irregularity. The clustering-based analysis provided structured insights into morphological patterns influencing classification, with explanations evaluated as clinically relevant and interpretable by a pathologist.

Conclusions: Our QXAI framework enhances the interpretability of DL-based pathology analysis by linking morphological features to classification decisions. This fosters trust in DL models and facilitates their clinical integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信