准固态和全固态锂硫电池界面介质快速反应动力学研究。

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-10-10 eCollection Date: 2025-01-01 DOI:10.34133/research.0949
Ke Wang, Yanjiao Ma, Torsten Brezesinski, Yuan Ma, Yuping Wu
{"title":"准固态和全固态锂硫电池界面介质快速反应动力学研究。","authors":"Ke Wang, Yanjiao Ma, Torsten Brezesinski, Yuan Ma, Yuping Wu","doi":"10.34133/research.0949","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, lithium-sulfur batteries have attracted much interest owing to the natural abundance of sulfur and its high theoretical specific capacity (<i>q</i> <sub>th</sub> ≈ 1,672 mAh g<sup>-1</sup>), offering the potential to achieve cell-level energy densities exceeding 400 Wh kg<sup>-1</sup>. While excess electrolyte facilitates redox reactions, it compromises specific energy and safety, driving the shift toward lean-electrolyte and solid-state systems. Although this helps suppress polysulfide shuttling, such strategies suffer from sluggish solid-solid conversion reactions and poor interfacial kinetics. Recently, studies adopting interfacial mediator strategies have emerged to address these challenges by enabling localized redox reactions at otherwise inactive interfaces. This perspective highlights advances in mediator-facilitated sulfur conversion under quasi- and all-solid-state conditions, offering insights into designing high-performance (electrolyte-efficient) lithium-sulfur batteries.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0949"},"PeriodicalIF":10.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511664/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast Reaction Kinetics via Interfacial Mediation in Quasi- and All-Solid-State Lithium-Sulfur Batteries.\",\"authors\":\"Ke Wang, Yanjiao Ma, Torsten Brezesinski, Yuan Ma, Yuping Wu\",\"doi\":\"10.34133/research.0949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, lithium-sulfur batteries have attracted much interest owing to the natural abundance of sulfur and its high theoretical specific capacity (<i>q</i> <sub>th</sub> ≈ 1,672 mAh g<sup>-1</sup>), offering the potential to achieve cell-level energy densities exceeding 400 Wh kg<sup>-1</sup>. While excess electrolyte facilitates redox reactions, it compromises specific energy and safety, driving the shift toward lean-electrolyte and solid-state systems. Although this helps suppress polysulfide shuttling, such strategies suffer from sluggish solid-solid conversion reactions and poor interfacial kinetics. Recently, studies adopting interfacial mediator strategies have emerged to address these challenges by enabling localized redox reactions at otherwise inactive interfaces. This perspective highlights advances in mediator-facilitated sulfur conversion under quasi- and all-solid-state conditions, offering insights into designing high-performance (electrolyte-efficient) lithium-sulfur batteries.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0949\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511664/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0949\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0949","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

近年来,锂硫电池因其天然丰富的硫和高理论比容量(q th≈1,672 mAh g-1)而引起了人们的极大兴趣,提供了实现超过400 Wh kg-1的电池级能量密度的潜力。虽然过量的电解质有助于氧化还原反应,但它会损害特定的能量和安全性,从而推动向贫电解质和固态系统的转变。虽然这有助于抑制多硫化物的穿梭,但这种策略受到缓慢的固-固转化反应和界面动力学差的影响。最近,采用界面介质策略的研究已经出现,通过在非活性界面上实现局部氧化还原反应来解决这些挑战。这一观点强调了准固态和全固态条件下介质促进硫转化的进展,为设计高性能(电解质高效)锂硫电池提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Reaction Kinetics via Interfacial Mediation in Quasi- and All-Solid-State Lithium-Sulfur Batteries.

In recent years, lithium-sulfur batteries have attracted much interest owing to the natural abundance of sulfur and its high theoretical specific capacity (q th ≈ 1,672 mAh g-1), offering the potential to achieve cell-level energy densities exceeding 400 Wh kg-1. While excess electrolyte facilitates redox reactions, it compromises specific energy and safety, driving the shift toward lean-electrolyte and solid-state systems. Although this helps suppress polysulfide shuttling, such strategies suffer from sluggish solid-solid conversion reactions and poor interfacial kinetics. Recently, studies adopting interfacial mediator strategies have emerged to address these challenges by enabling localized redox reactions at otherwise inactive interfaces. This perspective highlights advances in mediator-facilitated sulfur conversion under quasi- and all-solid-state conditions, offering insights into designing high-performance (electrolyte-efficient) lithium-sulfur batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信