{"title":"五味子载β-环糊精纳米颗粒用于动脉粥样硬化治疗。","authors":"Qiuxia Huang, Xinyao Liu, Jinjin Yu, Xinya Zhang, Siqi Wang, Lili Zhou, Xiaofeng Niu, Weifeng Li","doi":"10.1016/j.nano.2025.102866","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticle delivery systems have been extensively investigated as novel therapeutic strategies to promote drug-resistant disease. These nanoparticle formulations demonstrated improved bioavailability and enhanced tissue targeting. Also, there is growing acceptance of the value of traditional Chinese medicine in fighting disease. In this study, combining the advantages of nanomedicine with the characteristics of the acidic inflammatory microenvironment of atherosclerosis, a nanoplasmonic platform encapsulating the unstable drug Sch was designed for the treatment of atherosclerotic lesions. pH-responsive nanocarriers, an acid-labile material of acetylated β-cyclodextrin (β-CD) (Ac-bCD) were synthesized by chemical modification of β-CD. The resulting nanoparticles loaded with Sch (Sch-NPs) were prepared using a solvent evaporation method. In ApoE<sup>-/-</sup> mice fed a high-fat diet, Sch-NPs alleviated arterial damage, inhibited lipid metabolism disorders, reduced plaque area, and promoted plaque stability. In addition, Sch-NPs effectively reduced inflammatory infiltration and oxidative stress by modulating the MAPK pathway. Our findings demonstrate the promising applications of pH-responsive nanoparticles loaded with Sch for enhanced disease therapies such as atherosclerosis.</p>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":" ","pages":"102866"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schisandrin-loaded β-cyclodextrin nanoparticles for atherosclerosis therapy.\",\"authors\":\"Qiuxia Huang, Xinyao Liu, Jinjin Yu, Xinya Zhang, Siqi Wang, Lili Zhou, Xiaofeng Niu, Weifeng Li\",\"doi\":\"10.1016/j.nano.2025.102866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoparticle delivery systems have been extensively investigated as novel therapeutic strategies to promote drug-resistant disease. These nanoparticle formulations demonstrated improved bioavailability and enhanced tissue targeting. Also, there is growing acceptance of the value of traditional Chinese medicine in fighting disease. In this study, combining the advantages of nanomedicine with the characteristics of the acidic inflammatory microenvironment of atherosclerosis, a nanoplasmonic platform encapsulating the unstable drug Sch was designed for the treatment of atherosclerotic lesions. pH-responsive nanocarriers, an acid-labile material of acetylated β-cyclodextrin (β-CD) (Ac-bCD) were synthesized by chemical modification of β-CD. The resulting nanoparticles loaded with Sch (Sch-NPs) were prepared using a solvent evaporation method. In ApoE<sup>-/-</sup> mice fed a high-fat diet, Sch-NPs alleviated arterial damage, inhibited lipid metabolism disorders, reduced plaque area, and promoted plaque stability. In addition, Sch-NPs effectively reduced inflammatory infiltration and oxidative stress by modulating the MAPK pathway. Our findings demonstrate the promising applications of pH-responsive nanoparticles loaded with Sch for enhanced disease therapies such as atherosclerosis.</p>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\" \",\"pages\":\"102866\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nano.2025.102866\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nano.2025.102866","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Schisandrin-loaded β-cyclodextrin nanoparticles for atherosclerosis therapy.
Nanoparticle delivery systems have been extensively investigated as novel therapeutic strategies to promote drug-resistant disease. These nanoparticle formulations demonstrated improved bioavailability and enhanced tissue targeting. Also, there is growing acceptance of the value of traditional Chinese medicine in fighting disease. In this study, combining the advantages of nanomedicine with the characteristics of the acidic inflammatory microenvironment of atherosclerosis, a nanoplasmonic platform encapsulating the unstable drug Sch was designed for the treatment of atherosclerotic lesions. pH-responsive nanocarriers, an acid-labile material of acetylated β-cyclodextrin (β-CD) (Ac-bCD) were synthesized by chemical modification of β-CD. The resulting nanoparticles loaded with Sch (Sch-NPs) were prepared using a solvent evaporation method. In ApoE-/- mice fed a high-fat diet, Sch-NPs alleviated arterial damage, inhibited lipid metabolism disorders, reduced plaque area, and promoted plaque stability. In addition, Sch-NPs effectively reduced inflammatory infiltration and oxidative stress by modulating the MAPK pathway. Our findings demonstrate the promising applications of pH-responsive nanoparticles loaded with Sch for enhanced disease therapies such as atherosclerosis.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.