MYC激活和PTEN缺失联合驱动小鼠前列腺侵袭性侵袭前病变的分子特征。

IF 4.7 2区 医学 Q2 CELL BIOLOGY
Michael Rubenstein, Apurv Rege, Gretchen Hubbard, Danielle Cannady, Shreya Agarwal, Kevin Chen, Alex Estrada, Carolina Gomes Alexandre, Jessica Hicks, Tracy Jones, Qizhi Zheng, Srinivasan Yegnasubramanian, Charles J Bieberich, Angelo M De Marzo
{"title":"MYC激活和PTEN缺失联合驱动小鼠前列腺侵袭性侵袭前病变的分子特征。","authors":"Michael Rubenstein, Apurv Rege, Gretchen Hubbard, Danielle Cannady, Shreya Agarwal, Kevin Chen, Alex Estrada, Carolina Gomes Alexandre, Jessica Hicks, Tracy Jones, Qizhi Zheng, Srinivasan Yegnasubramanian, Charles J Bieberich, Angelo M De Marzo","doi":"10.1158/1541-7786.MCR-24-1206","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer ranges from indolent to rapidly progressive. An elevated cell proliferation index portends poor outcomes, yet the molecular alterations essential for increased cell proliferation remain ill-defined. Gain of MYC combined with biallelic PTEN loss predicts prostate cancer mortality. Prior studies have shown that combined MYC overexpression and Pten loss, driven by the Hoxb13 locus, results in prostatic intraepithelial neoplastic (PIN) lesions that progress to metastatic disease (BMPC mice). Yet, single gene alterations in these mice result only in PIN. Herein, we performed transcriptomic profiling of PIN lesions from each of the 3 genotypes. While MYC alone resulted in increases in genes related to cell cycle regulation/cell division, combined MYC and Pten loss led to a further and more consistent increase, and a synergistic cell cycle progression. Increased ribosome biogenesis/translation are required for cell proliferation. While MYC alone increased 45S rRNA, and most components of the translation machinery, these were more strongly induced in BMPC mice. Surprisingly, Pten loss alone resulted in a downregulation of translation machinery genes, which could explain the absence of biallelic PTEN loss in human PIN and early carcinomas. Some MYC targets were increased only after Pten loss, indicating Pten loss increases MYC activity. Implications: These findings are that increased cell cycle and translational machinery gene induction may explain the synergy between MYC and PTEN loss for increasing prostate cancer cell proliferation and disease aggressiveness. Finally, these results provide further support for the therapeutic targeting of translation in prostate cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined MYC Activation and PTEN Loss Drives Molecular Features of Aggressive Preinvasive Lesions in Mouse Prostate.\",\"authors\":\"Michael Rubenstein, Apurv Rege, Gretchen Hubbard, Danielle Cannady, Shreya Agarwal, Kevin Chen, Alex Estrada, Carolina Gomes Alexandre, Jessica Hicks, Tracy Jones, Qizhi Zheng, Srinivasan Yegnasubramanian, Charles J Bieberich, Angelo M De Marzo\",\"doi\":\"10.1158/1541-7786.MCR-24-1206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer ranges from indolent to rapidly progressive. An elevated cell proliferation index portends poor outcomes, yet the molecular alterations essential for increased cell proliferation remain ill-defined. Gain of MYC combined with biallelic PTEN loss predicts prostate cancer mortality. Prior studies have shown that combined MYC overexpression and Pten loss, driven by the Hoxb13 locus, results in prostatic intraepithelial neoplastic (PIN) lesions that progress to metastatic disease (BMPC mice). Yet, single gene alterations in these mice result only in PIN. Herein, we performed transcriptomic profiling of PIN lesions from each of the 3 genotypes. While MYC alone resulted in increases in genes related to cell cycle regulation/cell division, combined MYC and Pten loss led to a further and more consistent increase, and a synergistic cell cycle progression. Increased ribosome biogenesis/translation are required for cell proliferation. While MYC alone increased 45S rRNA, and most components of the translation machinery, these were more strongly induced in BMPC mice. Surprisingly, Pten loss alone resulted in a downregulation of translation machinery genes, which could explain the absence of biallelic PTEN loss in human PIN and early carcinomas. Some MYC targets were increased only after Pten loss, indicating Pten loss increases MYC activity. Implications: These findings are that increased cell cycle and translational machinery gene induction may explain the synergy between MYC and PTEN loss for increasing prostate cancer cell proliferation and disease aggressiveness. Finally, these results provide further support for the therapeutic targeting of translation in prostate cancer.</p>\",\"PeriodicalId\":19095,\"journal\":{\"name\":\"Molecular Cancer Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1541-7786.MCR-24-1206\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-1206","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌的范围从惰性到快速进展。升高的细胞增殖指数预示着不良的结果,然而增加细胞增殖所必需的分子改变仍然不明确。MYC的增加与双等位基因PTEN的缺失可以预测前列腺癌的死亡率。先前的研究表明,由Hoxb13基因座驱动的MYC过表达和Pten缺失联合导致前列腺上皮内肿瘤(PIN)病变进展为转移性疾病(BMPC小鼠)。然而,这些小鼠的单基因改变只导致PIN。在此,我们对3种基因型的PIN病变进行了转录组学分析。虽然MYC单独导致与细胞周期调节/细胞分裂相关的基因增加,但MYC和Pten的联合缺失导致进一步和更一致的增加,以及协同的细胞周期进展。增加核糖体的生物发生/翻译是细胞增殖所必需的。虽然MYC单独增加了45S rRNA和翻译机制的大多数组成部分,但这些在BMPC小鼠中被更强烈地诱导。令人惊讶的是,Pten缺失单独导致翻译机械基因的下调,这可以解释人类PIN和早期癌症中双等位基因Pten缺失的缺失。一些MYC靶点仅在Pten缺失后增加,表明Pten缺失增加了MYC活性。意义:这些发现表明细胞周期和翻译机制基因诱导的增加可以解释MYC和PTEN缺失之间的协同作用,从而增加前列腺癌细胞增殖和疾病侵袭性。最后,这些结果为翻译靶向治疗前列腺癌提供了进一步的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined MYC Activation and PTEN Loss Drives Molecular Features of Aggressive Preinvasive Lesions in Mouse Prostate.

Prostate cancer ranges from indolent to rapidly progressive. An elevated cell proliferation index portends poor outcomes, yet the molecular alterations essential for increased cell proliferation remain ill-defined. Gain of MYC combined with biallelic PTEN loss predicts prostate cancer mortality. Prior studies have shown that combined MYC overexpression and Pten loss, driven by the Hoxb13 locus, results in prostatic intraepithelial neoplastic (PIN) lesions that progress to metastatic disease (BMPC mice). Yet, single gene alterations in these mice result only in PIN. Herein, we performed transcriptomic profiling of PIN lesions from each of the 3 genotypes. While MYC alone resulted in increases in genes related to cell cycle regulation/cell division, combined MYC and Pten loss led to a further and more consistent increase, and a synergistic cell cycle progression. Increased ribosome biogenesis/translation are required for cell proliferation. While MYC alone increased 45S rRNA, and most components of the translation machinery, these were more strongly induced in BMPC mice. Surprisingly, Pten loss alone resulted in a downregulation of translation machinery genes, which could explain the absence of biallelic PTEN loss in human PIN and early carcinomas. Some MYC targets were increased only after Pten loss, indicating Pten loss increases MYC activity. Implications: These findings are that increased cell cycle and translational machinery gene induction may explain the synergy between MYC and PTEN loss for increasing prostate cancer cell proliferation and disease aggressiveness. Finally, these results provide further support for the therapeutic targeting of translation in prostate cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信