{"title":"ngly1缺陷模型和患者中n -乙酰氨基葡萄糖天冬氨酸及其衍生物的结构表征和形成的见解。","authors":"Hiroto Hirayama, Yuriko Tachida, Reiko Fujinawa, Makoto Asahina, Megumi Hirayama, Tomohiro Andou, Masaya Usui, Tadashi Suzuki","doi":"10.1093/glycob/cwaf065","DOIUrl":null,"url":null,"abstract":"<p><p>Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals), a widely conserved amidase in eukaryotes, catalyzes the removal of N-glycans from glycoproteins and contributes to the quality control system for nascent glycoproteins. Since the first report of a patient with an autosomal recessive genetic disorder caused by NGLY1 deficiency in 2012, over 150 cases have been identified globally. Among the potential biomarkers for NGLY1 deficiency, Asn-linked mono/oligosaccharides-Asn-GlcNAc and Asn-HexNAc-Hex-NeuAc-have emerged as the most consistently and markedly elevated molecules in the plasma or urine of affected patients. This study examined the Asn-GlcNAc biosynthetic pathway, demonstrating that cytosolic endo-β-N-acetylglucosaminidase (ENGase), the proteasome, and peptidases are essential for its generation. NGLY1-deficient models and patients exhibited accumulation of novel elongated forms of Asn-GlcNAc, including Asn-GlcNAc-GalNAc, Asn-GlcNAc-Gal, and Asn-GlcNAc-Gal-NeuAc, in cells, culture supernatant, plasma, and urine. Our findings indicate that Asn-GlcNAc and Asn-oligosaccharides (Asn-OSs) may serve as promising diagnostic tools for NGLY1 deficiency.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural characterization and insights into the formation of N-acetylglucosaminylasparagine and its derivatives in NGLY1-deficient models and patients.\",\"authors\":\"Hiroto Hirayama, Yuriko Tachida, Reiko Fujinawa, Makoto Asahina, Megumi Hirayama, Tomohiro Andou, Masaya Usui, Tadashi Suzuki\",\"doi\":\"10.1093/glycob/cwaf065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals), a widely conserved amidase in eukaryotes, catalyzes the removal of N-glycans from glycoproteins and contributes to the quality control system for nascent glycoproteins. Since the first report of a patient with an autosomal recessive genetic disorder caused by NGLY1 deficiency in 2012, over 150 cases have been identified globally. Among the potential biomarkers for NGLY1 deficiency, Asn-linked mono/oligosaccharides-Asn-GlcNAc and Asn-HexNAc-Hex-NeuAc-have emerged as the most consistently and markedly elevated molecules in the plasma or urine of affected patients. This study examined the Asn-GlcNAc biosynthetic pathway, demonstrating that cytosolic endo-β-N-acetylglucosaminidase (ENGase), the proteasome, and peptidases are essential for its generation. NGLY1-deficient models and patients exhibited accumulation of novel elongated forms of Asn-GlcNAc, including Asn-GlcNAc-GalNAc, Asn-GlcNAc-Gal, and Asn-GlcNAc-Gal-NeuAc, in cells, culture supernatant, plasma, and urine. Our findings indicate that Asn-GlcNAc and Asn-oligosaccharides (Asn-OSs) may serve as promising diagnostic tools for NGLY1 deficiency.</p>\",\"PeriodicalId\":12766,\"journal\":{\"name\":\"Glycobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/glycob/cwaf065\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwaf065","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural characterization and insights into the formation of N-acetylglucosaminylasparagine and its derivatives in NGLY1-deficient models and patients.
Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals), a widely conserved amidase in eukaryotes, catalyzes the removal of N-glycans from glycoproteins and contributes to the quality control system for nascent glycoproteins. Since the first report of a patient with an autosomal recessive genetic disorder caused by NGLY1 deficiency in 2012, over 150 cases have been identified globally. Among the potential biomarkers for NGLY1 deficiency, Asn-linked mono/oligosaccharides-Asn-GlcNAc and Asn-HexNAc-Hex-NeuAc-have emerged as the most consistently and markedly elevated molecules in the plasma or urine of affected patients. This study examined the Asn-GlcNAc biosynthetic pathway, demonstrating that cytosolic endo-β-N-acetylglucosaminidase (ENGase), the proteasome, and peptidases are essential for its generation. NGLY1-deficient models and patients exhibited accumulation of novel elongated forms of Asn-GlcNAc, including Asn-GlcNAc-GalNAc, Asn-GlcNAc-Gal, and Asn-GlcNAc-Gal-NeuAc, in cells, culture supernatant, plasma, and urine. Our findings indicate that Asn-GlcNAc and Asn-oligosaccharides (Asn-OSs) may serve as promising diagnostic tools for NGLY1 deficiency.
期刊介绍:
Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases).
Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.