{"title":"视神经再生研究前沿:2005 - 2025年该领域100篇最具影响力文章分析。","authors":"Saijilafu, Peng Chen, Lingchen Ye, Yuxi Shen, Qi Wang, Xuanwen Chen, Chimedragchaa Chimedtseren, Junqian Zhang, Linjun Fang, Renjie Xu","doi":"10.3389/fnins.2025.1634999","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>In this study, we evaluated the key features of the 100 most-cited publications on optic nerve regeneration from 2005 to 2025 employing bibliometric and visual analysis.</p><p><strong>Methods: </strong>The data for this study were obtained from a comprehensive search across multiple databases, including the Web of Science, Scopus, and Dimensions. We identified the top 100 most-cited articles published in each database from 2005 to 2025, merged and deduplicated the results, and selected the 100 most-cited papers on optic nerve regeneration. After extracting key details such as titles, authors, keywords, publication information, and institutional affiliations, a bibliometric analysis was conducted.</p><p><strong>Results: </strong>The top 100 most cited papers on optic nerve regeneration published between 2005 and 2025, accumulating 34,636 total citations with a median of 346 citations per paper. Prof. Zhigang He emerged as the most prolific author with 19 publications. The United States contributed 59 papers, while Harvard University led institutions with 30 publications. Key research themes included optic nerve regeneration, CNTF, gene therapy, and retinal ganglion cells.</p><p><strong>Conclusion: </strong>Our analysis of top-cited optic nerve regeneration research reveals sustained United States leadership in output and innovation. Early work focused on neuronal signaling pathways (PTEN/mTOR, KLF family), while current studies explore novel targets and biomaterials. Global collaboration among the United States, China, and European nations has accelerated progress. Key challenges remain in achieving functional long-distance regeneration. Future direction should prioritize the development of multi-target therapeutic methods, precise drug delivery, and the control of inflammation to improve nerve regeneration efficiency.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1634999"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12507791/pdf/","citationCount":"0","resultStr":"{\"title\":\"Frontiers of optic nerve regeneration research: an analysis of the top 100 most influential articles in the field from 2005 to 2025.\",\"authors\":\"Saijilafu, Peng Chen, Lingchen Ye, Yuxi Shen, Qi Wang, Xuanwen Chen, Chimedragchaa Chimedtseren, Junqian Zhang, Linjun Fang, Renjie Xu\",\"doi\":\"10.3389/fnins.2025.1634999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>In this study, we evaluated the key features of the 100 most-cited publications on optic nerve regeneration from 2005 to 2025 employing bibliometric and visual analysis.</p><p><strong>Methods: </strong>The data for this study were obtained from a comprehensive search across multiple databases, including the Web of Science, Scopus, and Dimensions. We identified the top 100 most-cited articles published in each database from 2005 to 2025, merged and deduplicated the results, and selected the 100 most-cited papers on optic nerve regeneration. After extracting key details such as titles, authors, keywords, publication information, and institutional affiliations, a bibliometric analysis was conducted.</p><p><strong>Results: </strong>The top 100 most cited papers on optic nerve regeneration published between 2005 and 2025, accumulating 34,636 total citations with a median of 346 citations per paper. Prof. Zhigang He emerged as the most prolific author with 19 publications. The United States contributed 59 papers, while Harvard University led institutions with 30 publications. Key research themes included optic nerve regeneration, CNTF, gene therapy, and retinal ganglion cells.</p><p><strong>Conclusion: </strong>Our analysis of top-cited optic nerve regeneration research reveals sustained United States leadership in output and innovation. Early work focused on neuronal signaling pathways (PTEN/mTOR, KLF family), while current studies explore novel targets and biomaterials. Global collaboration among the United States, China, and European nations has accelerated progress. Key challenges remain in achieving functional long-distance regeneration. Future direction should prioritize the development of multi-target therapeutic methods, precise drug delivery, and the control of inflammation to improve nerve regeneration efficiency.</p>\",\"PeriodicalId\":12639,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"19 \",\"pages\":\"1634999\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12507791/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2025.1634999\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1634999","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
目的:在本研究中,我们利用文献计量学和视觉分析评估了2005年至2025年100篇被引次数最多的视神经再生论文的主要特征。方法:本研究的数据来自多个数据库的综合检索,包括Web of Science、Scopus和Dimensions。我们选取2005 - 2025年各数据库发表的被引频次前100位的论文,对结果进行合并和去重复,筛选出被引频次前100位的视神经再生相关论文。提取标题、作者、关键词、出版信息、机构归属等关键细节后,进行文献计量分析。结果:2005 ~ 2025年被引频次前100位的视神经再生相关论文,总被引频次为34,636次,中位被引频次为346次。何志刚教授是最多产的作者,发表了19篇论文。美国发表了59篇论文,哈佛大学发表了30篇论文,排名第一。重点研究课题包括视神经再生、CNTF、基因治疗和视网膜神经节细胞。结论:我们对被引用最多的视神经再生研究的分析表明,美国在产出和创新方面持续处于领先地位。早期的工作集中在神经元信号通路(PTEN/mTOR, KLF家族),而目前的研究探索新的靶点和生物材料。美国、中国和欧洲国家之间的全球合作加速了进展。关键的挑战仍然是实现功能性长距离再生。未来的方向应优先发展多靶点治疗方法,精确给药,控制炎症,以提高神经再生效率。
Frontiers of optic nerve regeneration research: an analysis of the top 100 most influential articles in the field from 2005 to 2025.
Objectives: In this study, we evaluated the key features of the 100 most-cited publications on optic nerve regeneration from 2005 to 2025 employing bibliometric and visual analysis.
Methods: The data for this study were obtained from a comprehensive search across multiple databases, including the Web of Science, Scopus, and Dimensions. We identified the top 100 most-cited articles published in each database from 2005 to 2025, merged and deduplicated the results, and selected the 100 most-cited papers on optic nerve regeneration. After extracting key details such as titles, authors, keywords, publication information, and institutional affiliations, a bibliometric analysis was conducted.
Results: The top 100 most cited papers on optic nerve regeneration published between 2005 and 2025, accumulating 34,636 total citations with a median of 346 citations per paper. Prof. Zhigang He emerged as the most prolific author with 19 publications. The United States contributed 59 papers, while Harvard University led institutions with 30 publications. Key research themes included optic nerve regeneration, CNTF, gene therapy, and retinal ganglion cells.
Conclusion: Our analysis of top-cited optic nerve regeneration research reveals sustained United States leadership in output and innovation. Early work focused on neuronal signaling pathways (PTEN/mTOR, KLF family), while current studies explore novel targets and biomaterials. Global collaboration among the United States, China, and European nations has accelerated progress. Key challenges remain in achieving functional long-distance regeneration. Future direction should prioritize the development of multi-target therapeutic methods, precise drug delivery, and the control of inflammation to improve nerve regeneration efficiency.
期刊介绍:
Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.