血液学诊断中的人工智能:当前应用和未来展望。

IF 1.1 4区 医学 Q3 HEMATOLOGY
Annatina Sarah Schnegg-Kaufmann, Ulrike Bacher, Alicia Rovó, Martin Andres, Gertrud Wiedemann, Naomi Porret, Bijan Moshaver, Nicolas Kaufmann, Joëlle Tchinda, Sara C Meyer, Anne Angelillo-Scherrer
{"title":"血液学诊断中的人工智能:当前应用和未来展望。","authors":"Annatina Sarah Schnegg-Kaufmann, Ulrike Bacher, Alicia Rovó, Martin Andres, Gertrud Wiedemann, Naomi Porret, Bijan Moshaver, Nicolas Kaufmann, Joëlle Tchinda, Sara C Meyer, Anne Angelillo-Scherrer","doi":"10.1159/000548753","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical researchers and laboratory specialists are striving to explore artificial intelligence (AI) to facilitate and optimise haematological diagnostics in response to the growing demand for more efficient and accurate diagnoses. This review summarises current approaches integrating AI into blood and bone marrow cytomorphology, flow cytometry (FC), genetics, and haemostasis. Efforts include automated cell differentiation in peripheral blood and bone marrow aspirates, algorithms for identifying causes of anaemia, tools for rapid diagnosis of acute leukaemia and other haematological entities. AI in FC may reduce subjectivity and variability, while in genomics, machine learning (ML) is increasingly implemented for processing high-throughput sequencing data, and may enable automated detection of karyotypes in the future. In haemostasis, AI allows for automation in quality control, the establishment of personalised reference ranges, and potentially automated result interpretation. AI has, however, limitations such as cross-platform compatibility and often lacks sufficient validation. Ethical concerns include risks of bias and regulations are lagging behind the rapid developments. Despite this, AI shows promise for automating and improving many steps in hematological diagnostics, though final interpretation still needs expert haematologists.</p>","PeriodicalId":6981,"journal":{"name":"Acta Haematologica","volume":" ","pages":"1-25"},"PeriodicalIF":1.1000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in haematologic diagnostics: Current applications and future perspectives.\",\"authors\":\"Annatina Sarah Schnegg-Kaufmann, Ulrike Bacher, Alicia Rovó, Martin Andres, Gertrud Wiedemann, Naomi Porret, Bijan Moshaver, Nicolas Kaufmann, Joëlle Tchinda, Sara C Meyer, Anne Angelillo-Scherrer\",\"doi\":\"10.1159/000548753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical researchers and laboratory specialists are striving to explore artificial intelligence (AI) to facilitate and optimise haematological diagnostics in response to the growing demand for more efficient and accurate diagnoses. This review summarises current approaches integrating AI into blood and bone marrow cytomorphology, flow cytometry (FC), genetics, and haemostasis. Efforts include automated cell differentiation in peripheral blood and bone marrow aspirates, algorithms for identifying causes of anaemia, tools for rapid diagnosis of acute leukaemia and other haematological entities. AI in FC may reduce subjectivity and variability, while in genomics, machine learning (ML) is increasingly implemented for processing high-throughput sequencing data, and may enable automated detection of karyotypes in the future. In haemostasis, AI allows for automation in quality control, the establishment of personalised reference ranges, and potentially automated result interpretation. AI has, however, limitations such as cross-platform compatibility and often lacks sufficient validation. Ethical concerns include risks of bias and regulations are lagging behind the rapid developments. Despite this, AI shows promise for automating and improving many steps in hematological diagnostics, though final interpretation still needs expert haematologists.</p>\",\"PeriodicalId\":6981,\"journal\":{\"name\":\"Acta Haematologica\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Haematologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000548753\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Haematologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000548753","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

临床研究人员和实验室专家正在努力探索人工智能(AI),以促进和优化血液学诊断,以满足对更有效和准确诊断日益增长的需求。本文综述了目前将人工智能与血液和骨髓细胞形态学、流式细胞术(FC)、遗传学和止血相结合的方法。这些努力包括在外周血和骨髓抽吸物中自动细胞分化、识别贫血原因的算法、急性白血病和其他血液学实体的快速诊断工具。人工智能在FC中可以减少主观性和可变性,而在基因组学中,机器学习(ML)越来越多地用于处理高通量测序数据,并可能在未来实现核型的自动检测。在止血方面,人工智能允许自动化质量控制,建立个性化参考范围,以及潜在的自动化结果解释。然而,人工智能具有跨平台兼容性等局限性,并且通常缺乏足够的验证。伦理方面的担忧包括偏见风险,监管落后于快速发展。尽管如此,人工智能显示出自动化和改进血液学诊断许多步骤的希望,尽管最终的解释仍然需要血液学专家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence in haematologic diagnostics: Current applications and future perspectives.

Clinical researchers and laboratory specialists are striving to explore artificial intelligence (AI) to facilitate and optimise haematological diagnostics in response to the growing demand for more efficient and accurate diagnoses. This review summarises current approaches integrating AI into blood and bone marrow cytomorphology, flow cytometry (FC), genetics, and haemostasis. Efforts include automated cell differentiation in peripheral blood and bone marrow aspirates, algorithms for identifying causes of anaemia, tools for rapid diagnosis of acute leukaemia and other haematological entities. AI in FC may reduce subjectivity and variability, while in genomics, machine learning (ML) is increasingly implemented for processing high-throughput sequencing data, and may enable automated detection of karyotypes in the future. In haemostasis, AI allows for automation in quality control, the establishment of personalised reference ranges, and potentially automated result interpretation. AI has, however, limitations such as cross-platform compatibility and often lacks sufficient validation. Ethical concerns include risks of bias and regulations are lagging behind the rapid developments. Despite this, AI shows promise for automating and improving many steps in hematological diagnostics, though final interpretation still needs expert haematologists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Haematologica
Acta Haematologica 医学-血液学
CiteScore
4.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: ''Acta Haematologica'' is a well-established and internationally recognized clinically-oriented journal featuring balanced, wide-ranging coverage of current hematology research. A wealth of information on such problems as anemia, leukemia, lymphoma, multiple myeloma, hereditary disorders, blood coagulation, growth factors, hematopoiesis and differentiation is contained in first-rate basic and clinical papers some of which are accompanied by editorial comments by eminent experts. These are supplemented by short state-of-the-art communications, reviews and correspondence as well as occasional special issues devoted to ‘hot topics’ in hematology. These will keep the practicing hematologist well informed of the new developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信