Nabin Khanal, Michael A Marciniak, Marie-Christine Daniel, Liang Zhu, Charles Dumoulin, Keith Stringer, Matthew R Myers, Pavel Yarmolenko, Rupak K Banerjee
{"title":"评估fab功能化金纳米颗粒在小鼠肿瘤模型高强度聚焦超声消融过程中介导的热增强。","authors":"Nabin Khanal, Michael A Marciniak, Marie-Christine Daniel, Liang Zhu, Charles Dumoulin, Keith Stringer, Matthew R Myers, Pavel Yarmolenko, Rupak K Banerjee","doi":"10.1021/acsabm.5c00879","DOIUrl":null,"url":null,"abstract":"<p><p>High-intensity focused ultrasound (HIFU) stands out as a noninvasive modality that is gaining prominence for the localized treatment of malignant tumors. A mouse tumor model was used to assess the level of thermal enhancement afforded by Fab-functionalized gold nanoparticles (gNPs) during HIFU treatment. Prostate cancer cells (PC3) were used to grow tumors on the right flank of immunodeficient NSG mice. Three levels of gNPs concentrations (0%, 0.019%, and 0.125%) were injected directly into the tumors. HIFU sonication was performed at acoustic power levels of 30W, 40W, and 50W for the duration of 16 s inside a 1.5 T magnetic resonance system. Temperature rise data were recorded for each power level and gNPs concentration during the experiment and analyzed. Tumors were harvested 4 h after the sonication for a histopathology study. A histopathology study was conducted using hematoxylin and eosin (H&E) as well as cleaved caspase 3 (CC3) staining. For an acoustic power of 50W, temperature increases of 16.77 ± 2.33 °C, 19.95 ± 2.98 °C, and 27.78 ± 5.31 °C were recorded for gNPs concentrations of 0%, 0.019%, and 0.125%, respectively. Also, for an acoustic power of 50W, thermal doses of 0.08, 282.87, and 31563.70 min were obtained for gNPs concentrations of 0%, 0.019%, and 0.125%, respectively. Cellular damage around the focus was observed in histopathology studies using H&E staining in HIFU-treated tumors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Fab-Functionalized Gold Nanoparticles-Mediated Thermal Enhancement during High-Intensity Focused Ultrasound Ablation in a Mouse Tumor Model.\",\"authors\":\"Nabin Khanal, Michael A Marciniak, Marie-Christine Daniel, Liang Zhu, Charles Dumoulin, Keith Stringer, Matthew R Myers, Pavel Yarmolenko, Rupak K Banerjee\",\"doi\":\"10.1021/acsabm.5c00879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-intensity focused ultrasound (HIFU) stands out as a noninvasive modality that is gaining prominence for the localized treatment of malignant tumors. A mouse tumor model was used to assess the level of thermal enhancement afforded by Fab-functionalized gold nanoparticles (gNPs) during HIFU treatment. Prostate cancer cells (PC3) were used to grow tumors on the right flank of immunodeficient NSG mice. Three levels of gNPs concentrations (0%, 0.019%, and 0.125%) were injected directly into the tumors. HIFU sonication was performed at acoustic power levels of 30W, 40W, and 50W for the duration of 16 s inside a 1.5 T magnetic resonance system. Temperature rise data were recorded for each power level and gNPs concentration during the experiment and analyzed. Tumors were harvested 4 h after the sonication for a histopathology study. A histopathology study was conducted using hematoxylin and eosin (H&E) as well as cleaved caspase 3 (CC3) staining. For an acoustic power of 50W, temperature increases of 16.77 ± 2.33 °C, 19.95 ± 2.98 °C, and 27.78 ± 5.31 °C were recorded for gNPs concentrations of 0%, 0.019%, and 0.125%, respectively. Also, for an acoustic power of 50W, thermal doses of 0.08, 282.87, and 31563.70 min were obtained for gNPs concentrations of 0%, 0.019%, and 0.125%, respectively. Cellular damage around the focus was observed in histopathology studies using H&E staining in HIFU-treated tumors.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Assessing Fab-Functionalized Gold Nanoparticles-Mediated Thermal Enhancement during High-Intensity Focused Ultrasound Ablation in a Mouse Tumor Model.
High-intensity focused ultrasound (HIFU) stands out as a noninvasive modality that is gaining prominence for the localized treatment of malignant tumors. A mouse tumor model was used to assess the level of thermal enhancement afforded by Fab-functionalized gold nanoparticles (gNPs) during HIFU treatment. Prostate cancer cells (PC3) were used to grow tumors on the right flank of immunodeficient NSG mice. Three levels of gNPs concentrations (0%, 0.019%, and 0.125%) were injected directly into the tumors. HIFU sonication was performed at acoustic power levels of 30W, 40W, and 50W for the duration of 16 s inside a 1.5 T magnetic resonance system. Temperature rise data were recorded for each power level and gNPs concentration during the experiment and analyzed. Tumors were harvested 4 h after the sonication for a histopathology study. A histopathology study was conducted using hematoxylin and eosin (H&E) as well as cleaved caspase 3 (CC3) staining. For an acoustic power of 50W, temperature increases of 16.77 ± 2.33 °C, 19.95 ± 2.98 °C, and 27.78 ± 5.31 °C were recorded for gNPs concentrations of 0%, 0.019%, and 0.125%, respectively. Also, for an acoustic power of 50W, thermal doses of 0.08, 282.87, and 31563.70 min were obtained for gNPs concentrations of 0%, 0.019%, and 0.125%, respectively. Cellular damage around the focus was observed in histopathology studies using H&E staining in HIFU-treated tumors.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.