集热稳定性、高能量密度和低灵敏度于一体的前所未有的高能两性离子:克服传统高能材料的性能权衡

IF 5.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Bojun Tan , Xiong Yang , Jinkang Dou , Jian Su , Jing Zhang , Siwei Song , Changwei Tang , Minghui Xu , Shu Zeng , Wenjie Li , Jieyu Luan , Gen Zhang , Qinghua Zhang , Xianming Lu , Bozhou Wang , Ning Liu
{"title":"集热稳定性、高能量密度和低灵敏度于一体的前所未有的高能两性离子:克服传统高能材料的性能权衡","authors":"Bojun Tan ,&nbsp;Xiong Yang ,&nbsp;Jinkang Dou ,&nbsp;Jian Su ,&nbsp;Jing Zhang ,&nbsp;Siwei Song ,&nbsp;Changwei Tang ,&nbsp;Minghui Xu ,&nbsp;Shu Zeng ,&nbsp;Wenjie Li ,&nbsp;Jieyu Luan ,&nbsp;Gen Zhang ,&nbsp;Qinghua Zhang ,&nbsp;Xianming Lu ,&nbsp;Bozhou Wang ,&nbsp;Ning Liu","doi":"10.1016/j.dt.2025.05.024","DOIUrl":null,"url":null,"abstract":"<div><div>The simultaneous integration of high energy density, low sensitivity, and thermal stability in energetic materials has constituted a century-long scientific challenge. Herein, we address this through a dual-zwitterionic electronic delocalization strategy, yielding TYX-3, the first bis-inner salt triazolo-tetrazine framework combining these mutually exclusive properties. Uniform π-electron distribution and elevated bond dissociation energy confer exceptional thermal stability (<em>T</em><sub>d</sub> = 365 °C) with TATB-level insensitivity (impact sensitivity IS &gt; 40 J, friction sensitivity FS &gt; 360 N). Engineered π-stacked networks enable record density (1.99 g·cm<sup>−3</sup>) with detonation performance surpassing HMX benchmarks (detonation velocity 9315 m·s<sup>−1</sup>, detonation pressure 36.6 GPa). Practical implementation in Poly (3-nitratomethyl-3-methyloxetane) (PNMMFO) solid propellants demonstrates 5.4-fold safety enhancement over conventional HMX-based formulations while maintaining equivalent specific impulse. This work establishes a new design paradigm for energetic materials, overcoming the historical trade-offs between molecular stability and energy output through rational zwitterionic engineering.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"52 ","pages":"Pages 220-229"},"PeriodicalIF":5.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unprecedented energetic zwitterion integrating thermal stability, high energy density and low sensitivity: Overcoming performance trade-offs in conventional energetic materials\",\"authors\":\"Bojun Tan ,&nbsp;Xiong Yang ,&nbsp;Jinkang Dou ,&nbsp;Jian Su ,&nbsp;Jing Zhang ,&nbsp;Siwei Song ,&nbsp;Changwei Tang ,&nbsp;Minghui Xu ,&nbsp;Shu Zeng ,&nbsp;Wenjie Li ,&nbsp;Jieyu Luan ,&nbsp;Gen Zhang ,&nbsp;Qinghua Zhang ,&nbsp;Xianming Lu ,&nbsp;Bozhou Wang ,&nbsp;Ning Liu\",\"doi\":\"10.1016/j.dt.2025.05.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The simultaneous integration of high energy density, low sensitivity, and thermal stability in energetic materials has constituted a century-long scientific challenge. Herein, we address this through a dual-zwitterionic electronic delocalization strategy, yielding TYX-3, the first bis-inner salt triazolo-tetrazine framework combining these mutually exclusive properties. Uniform π-electron distribution and elevated bond dissociation energy confer exceptional thermal stability (<em>T</em><sub>d</sub> = 365 °C) with TATB-level insensitivity (impact sensitivity IS &gt; 40 J, friction sensitivity FS &gt; 360 N). Engineered π-stacked networks enable record density (1.99 g·cm<sup>−3</sup>) with detonation performance surpassing HMX benchmarks (detonation velocity 9315 m·s<sup>−1</sup>, detonation pressure 36.6 GPa). Practical implementation in Poly (3-nitratomethyl-3-methyloxetane) (PNMMFO) solid propellants demonstrates 5.4-fold safety enhancement over conventional HMX-based formulations while maintaining equivalent specific impulse. This work establishes a new design paradigm for energetic materials, overcoming the historical trade-offs between molecular stability and energy output through rational zwitterionic engineering.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"52 \",\"pages\":\"Pages 220-229\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914725001710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914725001710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在含能材料中同时集成高能量密度、低灵敏度和热稳定性是一个长达一个世纪的科学挑战。在这里,我们通过双两性离子电子离域策略解决了这个问题,得到了TYX-3,这是第一个结合了这些互排斥性质的双内盐三唑-四嗪框架。均匀的π电子分布和较高的键离解能赋予了优异的热稳定性(Td = 365°C)和tatb级的不灵敏度(冲击灵敏度为40 J,摩擦灵敏度为FS >; 360 N)。经工程设计的π堆叠网络实现了创纪录的密度(1.99 g·cm−3),爆轰性能超过HMX基准(爆轰速度9315 m·s−1,爆轰压力36.6 GPa)。在聚(3-硝基甲基-3-甲基乙烷)(PNMMFO)固体推进剂中的实际应用表明,在保持等效比冲的情况下,其安全性比传统的hmx基配方提高了5.4倍。这项工作为高能材料建立了一个新的设计范例,通过合理的两性离子工程克服了分子稳定性和能量输出之间的历史权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unprecedented energetic zwitterion integrating thermal stability, high energy density and low sensitivity: Overcoming performance trade-offs in conventional energetic materials

Unprecedented energetic zwitterion integrating thermal stability, high energy density and low sensitivity: Overcoming performance trade-offs in conventional energetic materials
The simultaneous integration of high energy density, low sensitivity, and thermal stability in energetic materials has constituted a century-long scientific challenge. Herein, we address this through a dual-zwitterionic electronic delocalization strategy, yielding TYX-3, the first bis-inner salt triazolo-tetrazine framework combining these mutually exclusive properties. Uniform π-electron distribution and elevated bond dissociation energy confer exceptional thermal stability (Td = 365 °C) with TATB-level insensitivity (impact sensitivity IS > 40 J, friction sensitivity FS > 360 N). Engineered π-stacked networks enable record density (1.99 g·cm−3) with detonation performance surpassing HMX benchmarks (detonation velocity 9315 m·s−1, detonation pressure 36.6 GPa). Practical implementation in Poly (3-nitratomethyl-3-methyloxetane) (PNMMFO) solid propellants demonstrates 5.4-fold safety enhancement over conventional HMX-based formulations while maintaining equivalent specific impulse. This work establishes a new design paradigm for energetic materials, overcoming the historical trade-offs between molecular stability and energy output through rational zwitterionic engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信