提高光伏性能的梯度结构无铅双钙钛矿太阳能电池策略优化

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shazia Akhtar Dar*,  and , Brajendra Singh Sengar, 
{"title":"提高光伏性能的梯度结构无铅双钙钛矿太阳能电池策略优化","authors":"Shazia Akhtar Dar*,&nbsp; and ,&nbsp;Brajendra Singh Sengar,&nbsp;","doi":"10.1021/acsaelm.5c01211","DOIUrl":null,"url":null,"abstract":"<p >Lead-free perovskite solar cells (PSCs) based on Cs<sub>2</sub>TiBr<sub>6</sub> are promising for environmentally sustainable photovoltaics, but their efficiency is often constrained by poor band alignment and recombination losses. Here, we use SCAPS-1D simulations to investigate a hole transport layer (HTL)-free Cs<sub>2</sub>TiBr<sub>6</sub> PSC employing an optimized gradient doping (<i>G</i><sub>d</sub>) strategy to overcome these limitations. The absorber layer doping concentration was exponentially graded with a gradient factor <i>G</i> = 300, identified after varying <i>G</i> from 1 to 1000, and paired with reduced bulk (1 × 10<sup>16</sup> cm<sup>–3</sup>) and interfacial (1 × 10<sup>14</sup> cm<sup>–3</sup>) defect densities. This combination enhances the band alignment, strengthens the internal electric field, and suppresses trap-assisted recombination. The resulting device achieves a PCE of 21.0% (Voc = 1.374 V, Jsc = 18.25 mA cm<sup>–2</sup>, FF = 83.69%), outperforming uniformly doped devices (10.85%) and previously reported Cs<sub>2</sub>TiBr<sub>6</sub> PSCs (≤19.30%). These findings establish gradient doping as a practical design pathway for scalable, stable, and high-efficiency lead-free PSCs.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"9073–9089"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic Optimization of Gradient-Structured HTL-free Lead-free Double-Perovskite Solar Cells for Enhanced Photovoltaic Performance\",\"authors\":\"Shazia Akhtar Dar*,&nbsp; and ,&nbsp;Brajendra Singh Sengar,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c01211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lead-free perovskite solar cells (PSCs) based on Cs<sub>2</sub>TiBr<sub>6</sub> are promising for environmentally sustainable photovoltaics, but their efficiency is often constrained by poor band alignment and recombination losses. Here, we use SCAPS-1D simulations to investigate a hole transport layer (HTL)-free Cs<sub>2</sub>TiBr<sub>6</sub> PSC employing an optimized gradient doping (<i>G</i><sub>d</sub>) strategy to overcome these limitations. The absorber layer doping concentration was exponentially graded with a gradient factor <i>G</i> = 300, identified after varying <i>G</i> from 1 to 1000, and paired with reduced bulk (1 × 10<sup>16</sup> cm<sup>–3</sup>) and interfacial (1 × 10<sup>14</sup> cm<sup>–3</sup>) defect densities. This combination enhances the band alignment, strengthens the internal electric field, and suppresses trap-assisted recombination. The resulting device achieves a PCE of 21.0% (Voc = 1.374 V, Jsc = 18.25 mA cm<sup>–2</sup>, FF = 83.69%), outperforming uniformly doped devices (10.85%) and previously reported Cs<sub>2</sub>TiBr<sub>6</sub> PSCs (≤19.30%). These findings establish gradient doping as a practical design pathway for scalable, stable, and high-efficiency lead-free PSCs.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 19\",\"pages\":\"9073–9089\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c01211\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01211","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于Cs2TiBr6的无铅钙钛矿太阳能电池(PSCs)是一种很有前景的环境可持续光伏电池,但其效率往往受到较差的能带对准和复合损失的限制。在这里,我们使用SCAPS-1D模拟来研究无空穴传输层(html)的Cs2TiBr6 PSC,采用优化的梯度掺杂(Gd)策略来克服这些限制。吸收层掺杂浓度以梯度因子G = 300为指数梯度,在G从1到1000变化后被识别,并与减小的体积(1 × 1016 cm-3)和界面(1 × 1014 cm-3)缺陷密度配对。这种组合增强了波段对准,增强了内部电场,抑制了陷阱辅助复合。该器件的PCE为21.0% (Voc = 1.374 V, Jsc = 18.25 mA cm-2, FF = 83.69%),优于均匀掺杂器件(10.85%)和先前报道的Cs2TiBr6 PSCs(≤19.30%)。这些发现确立了梯度掺杂作为可扩展、稳定、高效的无铅psc的实用设计途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strategic Optimization of Gradient-Structured HTL-free Lead-free Double-Perovskite Solar Cells for Enhanced Photovoltaic Performance

Strategic Optimization of Gradient-Structured HTL-free Lead-free Double-Perovskite Solar Cells for Enhanced Photovoltaic Performance

Lead-free perovskite solar cells (PSCs) based on Cs2TiBr6 are promising for environmentally sustainable photovoltaics, but their efficiency is often constrained by poor band alignment and recombination losses. Here, we use SCAPS-1D simulations to investigate a hole transport layer (HTL)-free Cs2TiBr6 PSC employing an optimized gradient doping (Gd) strategy to overcome these limitations. The absorber layer doping concentration was exponentially graded with a gradient factor G = 300, identified after varying G from 1 to 1000, and paired with reduced bulk (1 × 1016 cm–3) and interfacial (1 × 1014 cm–3) defect densities. This combination enhances the band alignment, strengthens the internal electric field, and suppresses trap-assisted recombination. The resulting device achieves a PCE of 21.0% (Voc = 1.374 V, Jsc = 18.25 mA cm–2, FF = 83.69%), outperforming uniformly doped devices (10.85%) and previously reported Cs2TiBr6 PSCs (≤19.30%). These findings establish gradient doping as a practical design pathway for scalable, stable, and high-efficiency lead-free PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信