Fe3GeTe2/分子异质结构中交换偏置的分子工程

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mayank Sharma, , , Junhyeon Jo*, , , Garen Avedissian, , , Bertuğ Bayindir, , , Jun Kang, , , Hasan Sahin, , , Fèlix Casanova, , , Marco Gobbi*, , and , Luis E. Hueso*, 
{"title":"Fe3GeTe2/分子异质结构中交换偏置的分子工程","authors":"Mayank Sharma,&nbsp;, ,&nbsp;Junhyeon Jo*,&nbsp;, ,&nbsp;Garen Avedissian,&nbsp;, ,&nbsp;Bertuğ Bayindir,&nbsp;, ,&nbsp;Jun Kang,&nbsp;, ,&nbsp;Hasan Sahin,&nbsp;, ,&nbsp;Fèlix Casanova,&nbsp;, ,&nbsp;Marco Gobbi*,&nbsp;, and ,&nbsp;Luis E. Hueso*,&nbsp;","doi":"10.1021/acsaelm.5c01598","DOIUrl":null,"url":null,"abstract":"<p >Molecules offer a versatile route to tailor magnetism through chemical design and spin-state control. When integrated with surface-sensitive layered magnets, molecules can not only exhibit tunable magnetic properties or even activate distinct magnetic phases but can also interact with the layered magnets to manipulate their magnetic dynamics. Here, we demonstrate tunable exchange bias in hybrid heterostructures composed of the layered ferromagnet Fe<sub>3</sub>GeTe<sub>2</sub> (FGT) and metallophthalocyanine (MPc) molecules having different central transition ions: MnPc, ZnPc, and H<sub>2</sub>Pc. The MnPc/FGT system exhibits a robust exchange bias of 1000 Oe at 10 K, with a record-high exchange bias-to-coercivity ratio of 0.37, attributed to the antiferromagnetic nature of MnPc. Surprisingly, the diamagnetic ZnPc induces a finite exchange bias of 200 Oe, highlighting the contribution of the emerging spinterface effect. In contrast, the metal-free H<sub>2</sub>Pc yields no exchange bias, underscoring the essential role of designed molecules for magnetic interaction. First-principles calculations reveal energetically favorable stacking configurations and spin alignments, in agreement with experimental observations. These results highlight the potential of molecular functionalization on magnetism, enabling the on-demand engineering of layered magnetic systems.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"9204–9211"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Engineering of Exchange Bias in Fe3GeTe2/Molecule Heterostructures\",\"authors\":\"Mayank Sharma,&nbsp;, ,&nbsp;Junhyeon Jo*,&nbsp;, ,&nbsp;Garen Avedissian,&nbsp;, ,&nbsp;Bertuğ Bayindir,&nbsp;, ,&nbsp;Jun Kang,&nbsp;, ,&nbsp;Hasan Sahin,&nbsp;, ,&nbsp;Fèlix Casanova,&nbsp;, ,&nbsp;Marco Gobbi*,&nbsp;, and ,&nbsp;Luis E. Hueso*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c01598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molecules offer a versatile route to tailor magnetism through chemical design and spin-state control. When integrated with surface-sensitive layered magnets, molecules can not only exhibit tunable magnetic properties or even activate distinct magnetic phases but can also interact with the layered magnets to manipulate their magnetic dynamics. Here, we demonstrate tunable exchange bias in hybrid heterostructures composed of the layered ferromagnet Fe<sub>3</sub>GeTe<sub>2</sub> (FGT) and metallophthalocyanine (MPc) molecules having different central transition ions: MnPc, ZnPc, and H<sub>2</sub>Pc. The MnPc/FGT system exhibits a robust exchange bias of 1000 Oe at 10 K, with a record-high exchange bias-to-coercivity ratio of 0.37, attributed to the antiferromagnetic nature of MnPc. Surprisingly, the diamagnetic ZnPc induces a finite exchange bias of 200 Oe, highlighting the contribution of the emerging spinterface effect. In contrast, the metal-free H<sub>2</sub>Pc yields no exchange bias, underscoring the essential role of designed molecules for magnetic interaction. First-principles calculations reveal energetically favorable stacking configurations and spin alignments, in agreement with experimental observations. These results highlight the potential of molecular functionalization on magnetism, enabling the on-demand engineering of layered magnetic systems.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 19\",\"pages\":\"9204–9211\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c01598\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01598","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分子通过化学设计和自旋状态控制提供了一种通用的途径来定制磁性。当与表面敏感的层状磁体集成时,分子不仅可以表现出可调的磁性,甚至可以激活不同的磁相,而且还可以与层状磁体相互作用以操纵其磁动力学。在这里,我们证明了由层状铁磁体Fe3GeTe2 (FGT)和金属酞菁(MPc)分子组成的杂化异质结构中可调节的交换偏置,这些分子具有不同的中心过渡离子:MnPc, ZnPc和H2Pc。MnPc/FGT体系在10 K时表现出1000 Oe的强大交换偏置,由于MnPc的反铁磁性,交换偏置/矫顽力比达到了创纪录的0.37。令人惊讶的是,抗磁性的ZnPc诱导了200 Oe的有限交换偏置,突出了新出现的空间界面效应的贡献。相比之下,不含金属的H2Pc不会产生交换偏置,这强调了设计的分子在磁相互作用中的重要作用。第一性原理计算揭示了能量有利的堆叠构型和自旋排列,与实验观察一致。这些结果突出了分子功能化在磁性上的潜力,使分层磁性系统的按需工程成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Engineering of Exchange Bias in Fe3GeTe2/Molecule Heterostructures

Molecular Engineering of Exchange Bias in Fe3GeTe2/Molecule Heterostructures

Molecules offer a versatile route to tailor magnetism through chemical design and spin-state control. When integrated with surface-sensitive layered magnets, molecules can not only exhibit tunable magnetic properties or even activate distinct magnetic phases but can also interact with the layered magnets to manipulate their magnetic dynamics. Here, we demonstrate tunable exchange bias in hybrid heterostructures composed of the layered ferromagnet Fe3GeTe2 (FGT) and metallophthalocyanine (MPc) molecules having different central transition ions: MnPc, ZnPc, and H2Pc. The MnPc/FGT system exhibits a robust exchange bias of 1000 Oe at 10 K, with a record-high exchange bias-to-coercivity ratio of 0.37, attributed to the antiferromagnetic nature of MnPc. Surprisingly, the diamagnetic ZnPc induces a finite exchange bias of 200 Oe, highlighting the contribution of the emerging spinterface effect. In contrast, the metal-free H2Pc yields no exchange bias, underscoring the essential role of designed molecules for magnetic interaction. First-principles calculations reveal energetically favorable stacking configurations and spin alignments, in agreement with experimental observations. These results highlight the potential of molecular functionalization on magnetism, enabling the on-demand engineering of layered magnetic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信