高效有机太阳能电池晶体添加剂分子的一锅直接芳基化合成

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruoqi Song, , , Jiayu Li, , , Yuechen Li, , , Minghui Wang, , , Sergio Gámez-Valenzuela, , , Hongxiang Li, , , Jianfeng Li*, , , Zicheng Ding, , , Xiangzhe Li, , , Sixing Xiong, , , Kai Wang*, , , Xiaochen Wang*, , , Shengzhong Frank Liu, , and , Yongfang Li, 
{"title":"高效有机太阳能电池晶体添加剂分子的一锅直接芳基化合成","authors":"Ruoqi Song,&nbsp;, ,&nbsp;Jiayu Li,&nbsp;, ,&nbsp;Yuechen Li,&nbsp;, ,&nbsp;Minghui Wang,&nbsp;, ,&nbsp;Sergio Gámez-Valenzuela,&nbsp;, ,&nbsp;Hongxiang Li,&nbsp;, ,&nbsp;Jianfeng Li*,&nbsp;, ,&nbsp;Zicheng Ding,&nbsp;, ,&nbsp;Xiangzhe Li,&nbsp;, ,&nbsp;Sixing Xiong,&nbsp;, ,&nbsp;Kai Wang*,&nbsp;, ,&nbsp;Xiaochen Wang*,&nbsp;, ,&nbsp;Shengzhong Frank Liu,&nbsp;, and ,&nbsp;Yongfang Li,&nbsp;","doi":"10.1021/acsaelm.5c01486","DOIUrl":null,"url":null,"abstract":"<p >Crystalline molecules (CMs) demonstrate tremendous potential in regulating the active layer morphology of organic solar cells (OSCs) through robust intermolecular interactions and the formation of highly ordered crystalline domains. As additives, CMs can effectively balance the crystallinity differences between polymers and small molecular acceptors while precisely controlling molecular stacking and phase separation processes, thereby constructing efficient charge transport channels and enhancing power conversion efficiency (PCE). However, the synthesis of most CMs involves complex multistep procedures, which hinders their widespread application. Here, we developed a facile one-pot direct arylation methodology for synthesizing CMs for high-efficiency OSCs, by preparing three structurally simple CMs (2TBT, 3TBT, and 4TBT), where 3TBT and 4TBT exhibit enhanced crystallinity and possess liquid crystalline (LC) properties. Upon incorporating these additives into PM6:L8-BO-based nonfullerene OSCs, the LC additives 3TBT and 4TBT enabled precise regulation of the active layer’s crystallinity, phase separation, and microstructure, while the non-LC additive 2TBT showed minimal morphological influence, highlighting the unique role of LC in morphological regulation. The aforementioned favorable morphological evolution simultaneously enhanced exciton dissociation and collection while promoting charge transport, resulting in an improvement of the device’s PCE from 17.00 to 18.12%. This work not only provides a convenient synthetic pathway for CMs and demonstrates that CM additives can effectively regulate the active layer of OSCs, but also offers a practical strategy for developing high-performance OSCs by leveraging their unique properties.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"9116–9126"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile One-Pot Direct Arylation Synthesis of Crystalline Additive Molecules for High-Efficiency Organic Solar Cells\",\"authors\":\"Ruoqi Song,&nbsp;, ,&nbsp;Jiayu Li,&nbsp;, ,&nbsp;Yuechen Li,&nbsp;, ,&nbsp;Minghui Wang,&nbsp;, ,&nbsp;Sergio Gámez-Valenzuela,&nbsp;, ,&nbsp;Hongxiang Li,&nbsp;, ,&nbsp;Jianfeng Li*,&nbsp;, ,&nbsp;Zicheng Ding,&nbsp;, ,&nbsp;Xiangzhe Li,&nbsp;, ,&nbsp;Sixing Xiong,&nbsp;, ,&nbsp;Kai Wang*,&nbsp;, ,&nbsp;Xiaochen Wang*,&nbsp;, ,&nbsp;Shengzhong Frank Liu,&nbsp;, and ,&nbsp;Yongfang Li,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c01486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Crystalline molecules (CMs) demonstrate tremendous potential in regulating the active layer morphology of organic solar cells (OSCs) through robust intermolecular interactions and the formation of highly ordered crystalline domains. As additives, CMs can effectively balance the crystallinity differences between polymers and small molecular acceptors while precisely controlling molecular stacking and phase separation processes, thereby constructing efficient charge transport channels and enhancing power conversion efficiency (PCE). However, the synthesis of most CMs involves complex multistep procedures, which hinders their widespread application. Here, we developed a facile one-pot direct arylation methodology for synthesizing CMs for high-efficiency OSCs, by preparing three structurally simple CMs (2TBT, 3TBT, and 4TBT), where 3TBT and 4TBT exhibit enhanced crystallinity and possess liquid crystalline (LC) properties. Upon incorporating these additives into PM6:L8-BO-based nonfullerene OSCs, the LC additives 3TBT and 4TBT enabled precise regulation of the active layer’s crystallinity, phase separation, and microstructure, while the non-LC additive 2TBT showed minimal morphological influence, highlighting the unique role of LC in morphological regulation. The aforementioned favorable morphological evolution simultaneously enhanced exciton dissociation and collection while promoting charge transport, resulting in an improvement of the device’s PCE from 17.00 to 18.12%. This work not only provides a convenient synthetic pathway for CMs and demonstrates that CM additives can effectively regulate the active layer of OSCs, but also offers a practical strategy for developing high-performance OSCs by leveraging their unique properties.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 19\",\"pages\":\"9116–9126\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c01486\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01486","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

晶体分子(CMs)通过强大的分子间相互作用和高度有序的晶体结构域的形成,在调节有机太阳能电池(OSCs)的活性层形态方面显示出巨大的潜力。作为添加剂,CMs可以有效平衡聚合物和小分子受体之间的结晶度差异,同时精确控制分子的堆叠和相分离过程,从而构建高效的电荷传输通道,提高功率转换效率(PCE)。然而,大多数CMs的合成涉及复杂的多步骤过程,这阻碍了它们的广泛应用。本文通过制备三种结构简单的CMs (2TBT、3TBT和4TBT),开发了一种简便的一锅直接芳基化方法,用于合成用于高效OSCs的CMs,其中3TBT和4TBT具有增强的结晶度并具有液晶(LC)性质。将这些添加剂添加到PM6: l8 - bo基非富勒烯OSCs中,LC添加剂3TBT和4TBT能够精确调节活性层的结晶度、相分离和微观结构,而非LC添加剂2TBT对活性层的形态影响最小,凸显了LC在形态调节中的独特作用。上述有利的形态演化在促进电荷输运的同时,也增强了激子的解离和收集,使器件的PCE从17.00提高到18.12%。本研究不仅为CM提供了一条便捷的合成途径,证明CM添加剂可以有效调节OSCs活性层,而且为利用其独特的性能开发高性能OSCs提供了实用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facile One-Pot Direct Arylation Synthesis of Crystalline Additive Molecules for High-Efficiency Organic Solar Cells

Facile One-Pot Direct Arylation Synthesis of Crystalline Additive Molecules for High-Efficiency Organic Solar Cells

Crystalline molecules (CMs) demonstrate tremendous potential in regulating the active layer morphology of organic solar cells (OSCs) through robust intermolecular interactions and the formation of highly ordered crystalline domains. As additives, CMs can effectively balance the crystallinity differences between polymers and small molecular acceptors while precisely controlling molecular stacking and phase separation processes, thereby constructing efficient charge transport channels and enhancing power conversion efficiency (PCE). However, the synthesis of most CMs involves complex multistep procedures, which hinders their widespread application. Here, we developed a facile one-pot direct arylation methodology for synthesizing CMs for high-efficiency OSCs, by preparing three structurally simple CMs (2TBT, 3TBT, and 4TBT), where 3TBT and 4TBT exhibit enhanced crystallinity and possess liquid crystalline (LC) properties. Upon incorporating these additives into PM6:L8-BO-based nonfullerene OSCs, the LC additives 3TBT and 4TBT enabled precise regulation of the active layer’s crystallinity, phase separation, and microstructure, while the non-LC additive 2TBT showed minimal morphological influence, highlighting the unique role of LC in morphological regulation. The aforementioned favorable morphological evolution simultaneously enhanced exciton dissociation and collection while promoting charge transport, resulting in an improvement of the device’s PCE from 17.00 to 18.12%. This work not only provides a convenient synthetic pathway for CMs and demonstrates that CM additives can effectively regulate the active layer of OSCs, but also offers a practical strategy for developing high-performance OSCs by leveraging their unique properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信