用于高性能12 μm像素微测热计的优化ALD-ZnO薄膜:红外传感的制备、仿真和设计策略

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bhavya Padha, , , Zahoor Ahmed, , , Naresh Padha, , , Dependra Singh Rawal, , , Isha Yadav*, , and , Sandeep Arya*, 
{"title":"用于高性能12 μm像素微测热计的优化ALD-ZnO薄膜:红外传感的制备、仿真和设计策略","authors":"Bhavya Padha,&nbsp;, ,&nbsp;Zahoor Ahmed,&nbsp;, ,&nbsp;Naresh Padha,&nbsp;, ,&nbsp;Dependra Singh Rawal,&nbsp;, ,&nbsp;Isha Yadav*,&nbsp;, and ,&nbsp;Sandeep Arya*,&nbsp;","doi":"10.1021/acsaelm.5c01235","DOIUrl":null,"url":null,"abstract":"<p >A zinc oxide (ZnO)-based microbolometer with a 12 μm pixel pitch was developed using atomic layer deposition (ALD) on silica (SiO<sub>2</sub>/Si) substrates for infrared (IR) detection. ZnO offers a complementary metal-oxide semiconductor (CMOS)-compatible, thermally stable, low-cost alternative, unlike conventional bolometers. ZnO thin films were deposited via ALD on SiO<sub>2</sub>/Si substrates at 120, 150, and 200 °C for 1200, 1500, and 1800 cycles, respectively, and analyzed using various characterization techniques. The optimized ZnO thin film exhibited a −12.9 %/K temperature coefficient of resistance (TCR). Pixel design of all the films were carried out. Thermal modeling revealed a thermal conductance of 1.21 × 10<sup>–7</sup> W/K and a time constant of 336 μs. The designed pixel achieved a responsivity of 1.10 × 10<sup>8</sup> V/W, noise equivalent power (NEP) of 4.13 × 10<sup>–14</sup> W/√Hz, detectivity of 1.84 × 10<sup>14</sup> cm·√Hz/W, and noise equivalent temperature difference (NETD) of 77.43 mK. These results demonstrate the potential of CMOS-compatible ALD-grown ZnO for high-performance microbolometric IR sensing.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"8912–8925"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized ALD-ZnO Thin Films for High-Performance 12 μm Pixel Microbolometers: Fabrication, Simulation, and Design Strategies for Infrared Sensing\",\"authors\":\"Bhavya Padha,&nbsp;, ,&nbsp;Zahoor Ahmed,&nbsp;, ,&nbsp;Naresh Padha,&nbsp;, ,&nbsp;Dependra Singh Rawal,&nbsp;, ,&nbsp;Isha Yadav*,&nbsp;, and ,&nbsp;Sandeep Arya*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c01235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A zinc oxide (ZnO)-based microbolometer with a 12 μm pixel pitch was developed using atomic layer deposition (ALD) on silica (SiO<sub>2</sub>/Si) substrates for infrared (IR) detection. ZnO offers a complementary metal-oxide semiconductor (CMOS)-compatible, thermally stable, low-cost alternative, unlike conventional bolometers. ZnO thin films were deposited via ALD on SiO<sub>2</sub>/Si substrates at 120, 150, and 200 °C for 1200, 1500, and 1800 cycles, respectively, and analyzed using various characterization techniques. The optimized ZnO thin film exhibited a −12.9 %/K temperature coefficient of resistance (TCR). Pixel design of all the films were carried out. Thermal modeling revealed a thermal conductance of 1.21 × 10<sup>–7</sup> W/K and a time constant of 336 μs. The designed pixel achieved a responsivity of 1.10 × 10<sup>8</sup> V/W, noise equivalent power (NEP) of 4.13 × 10<sup>–14</sup> W/√Hz, detectivity of 1.84 × 10<sup>14</sup> cm·√Hz/W, and noise equivalent temperature difference (NETD) of 77.43 mK. These results demonstrate the potential of CMOS-compatible ALD-grown ZnO for high-performance microbolometric IR sensing.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 19\",\"pages\":\"8912–8925\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c01235\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01235","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

采用原子层沉积(ALD)技术在二氧化硅(SiO2/Si)衬底上制备了一种12 μm像素间距的氧化锌(ZnO)微测热计,用于红外(IR)检测。与传统的测热计不同,ZnO提供了一种互补的金属氧化物半导体(CMOS)兼容、热稳定、低成本的替代方案。分别在120、150和200°C下,通过ALD在SiO2/Si衬底上沉积了1200、1500和1800个循环的ZnO薄膜,并使用各种表征技术对其进行了分析。优化后的ZnO薄膜电阻温度系数(TCR)为−12.9 %/K。对所有薄膜进行了像素化设计。热模拟结果表明,其导热系数为1.21 × 10-7 W/K,时间常数为336 μs。设计像素实现响应率为1.10 ×  V / 108 W,噪声等效功率(NEP) 4.13 × 10 - 14 W /√赫兹,探测能力1.84 × 1014 厘米·√Hz / W和噪声等效温差(77.43)经济技术开发区 可。这些结果证明了cmos兼容的ald生长ZnO在高性能微热红外传感方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimized ALD-ZnO Thin Films for High-Performance 12 μm Pixel Microbolometers: Fabrication, Simulation, and Design Strategies for Infrared Sensing

Optimized ALD-ZnO Thin Films for High-Performance 12 μm Pixel Microbolometers: Fabrication, Simulation, and Design Strategies for Infrared Sensing

A zinc oxide (ZnO)-based microbolometer with a 12 μm pixel pitch was developed using atomic layer deposition (ALD) on silica (SiO2/Si) substrates for infrared (IR) detection. ZnO offers a complementary metal-oxide semiconductor (CMOS)-compatible, thermally stable, low-cost alternative, unlike conventional bolometers. ZnO thin films were deposited via ALD on SiO2/Si substrates at 120, 150, and 200 °C for 1200, 1500, and 1800 cycles, respectively, and analyzed using various characterization techniques. The optimized ZnO thin film exhibited a −12.9 %/K temperature coefficient of resistance (TCR). Pixel design of all the films were carried out. Thermal modeling revealed a thermal conductance of 1.21 × 10–7 W/K and a time constant of 336 μs. The designed pixel achieved a responsivity of 1.10 × 108 V/W, noise equivalent power (NEP) of 4.13 × 10–14 W/√Hz, detectivity of 1.84 × 1014 cm·√Hz/W, and noise equivalent temperature difference (NETD) of 77.43 mK. These results demonstrate the potential of CMOS-compatible ALD-grown ZnO for high-performance microbolometric IR sensing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信