表面处理对锗2dhg输运性能的影响

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nikunj Sangwan, , , Eric Jutzi, , , Christian Olsen, , , Sarah Vogel, , , Arianna Nigro, , , Ilaria Zardo, , and , Andrea Hofmann*, 
{"title":"表面处理对锗2dhg输运性能的影响","authors":"Nikunj Sangwan,&nbsp;, ,&nbsp;Eric Jutzi,&nbsp;, ,&nbsp;Christian Olsen,&nbsp;, ,&nbsp;Sarah Vogel,&nbsp;, ,&nbsp;Arianna Nigro,&nbsp;, ,&nbsp;Ilaria Zardo,&nbsp;, and ,&nbsp;Andrea Hofmann*,&nbsp;","doi":"10.1021/acsaelm.5c01069","DOIUrl":null,"url":null,"abstract":"<p >Holes in planar germanium (Ge) heterostructures show promise for quantum applications, particularly in superconducting and spin qubits, due to strong spin–orbit interaction, low effective mass, and the absence of valley degeneracies. However, charge traps cause issues such as gate hysteresis and charge noise. This study examines the effect of surface treatments on the accumulation behavior and transport properties of Ge-based two-dimensional hole gases (2DHGs). Oxygen plasma treatment reduces conduction in a setting without applied top gate voltage, improves the mobility, and lowers the percolation density, while hydrofluoric acid (HF) etching provides no benefit. The results suggest that interface traps from the partially oxidized silicon (Si) cap pin the Fermi level and that oxygen plasma reduces the trap density by fully oxidizing the Si cap. Therefore, optimizing surface treatments is crucial for minimizing the charge traps and thereby enhancing the device’s performance.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"8844–8849"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c01069","citationCount":"0","resultStr":"{\"title\":\"Impact of Surface Treatments on the Transport Properties of Germanium 2DHGs\",\"authors\":\"Nikunj Sangwan,&nbsp;, ,&nbsp;Eric Jutzi,&nbsp;, ,&nbsp;Christian Olsen,&nbsp;, ,&nbsp;Sarah Vogel,&nbsp;, ,&nbsp;Arianna Nigro,&nbsp;, ,&nbsp;Ilaria Zardo,&nbsp;, and ,&nbsp;Andrea Hofmann*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c01069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Holes in planar germanium (Ge) heterostructures show promise for quantum applications, particularly in superconducting and spin qubits, due to strong spin–orbit interaction, low effective mass, and the absence of valley degeneracies. However, charge traps cause issues such as gate hysteresis and charge noise. This study examines the effect of surface treatments on the accumulation behavior and transport properties of Ge-based two-dimensional hole gases (2DHGs). Oxygen plasma treatment reduces conduction in a setting without applied top gate voltage, improves the mobility, and lowers the percolation density, while hydrofluoric acid (HF) etching provides no benefit. The results suggest that interface traps from the partially oxidized silicon (Si) cap pin the Fermi level and that oxygen plasma reduces the trap density by fully oxidizing the Si cap. Therefore, optimizing surface treatments is crucial for minimizing the charge traps and thereby enhancing the device’s performance.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 19\",\"pages\":\"8844–8849\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c01069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c01069\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01069","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

平面锗(Ge)异质结构中的空穴显示出量子应用的前景,特别是在超导和自旋量子比特中,由于强自旋轨道相互作用,低有效质量和没有谷简并。然而,电荷陷阱会引起诸如门滞后和电荷噪声等问题。本研究考察了表面处理对锗基二维空穴气体(2dhg)聚集行为和输运性质的影响。氧等离子体处理在没有施加顶栅极电压的情况下减少了传导,提高了迁移率,降低了渗透密度,而氢氟酸(HF)蚀刻没有任何好处。结果表明,来自部分氧化硅(Si)帽的界面陷阱固定在费米能级上,氧等离子体通过完全氧化硅帽降低了陷阱密度。因此,优化表面处理对于最小化电荷陷阱并从而提高器件性能至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Surface Treatments on the Transport Properties of Germanium 2DHGs

Holes in planar germanium (Ge) heterostructures show promise for quantum applications, particularly in superconducting and spin qubits, due to strong spin–orbit interaction, low effective mass, and the absence of valley degeneracies. However, charge traps cause issues such as gate hysteresis and charge noise. This study examines the effect of surface treatments on the accumulation behavior and transport properties of Ge-based two-dimensional hole gases (2DHGs). Oxygen plasma treatment reduces conduction in a setting without applied top gate voltage, improves the mobility, and lowers the percolation density, while hydrofluoric acid (HF) etching provides no benefit. The results suggest that interface traps from the partially oxidized silicon (Si) cap pin the Fermi level and that oxygen plasma reduces the trap density by fully oxidizing the Si cap. Therefore, optimizing surface treatments is crucial for minimizing the charge traps and thereby enhancing the device’s performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信