CuO@TiO2中空立方体使高选择性和稳定的光催化非氧化甲烷偶联到乙烯

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaojun Guo, Yuqi Geng, Qingshan Zhu
{"title":"CuO@TiO2中空立方体使高选择性和稳定的光催化非氧化甲烷偶联到乙烯","authors":"Xiaojun Guo, Yuqi Geng, Qingshan Zhu","doi":"10.1002/adfm.202521714","DOIUrl":null,"url":null,"abstract":"Photocatalytic non‐oxidative coupling of methane (PNOCM) provides a green and sustainable route to the synthesis of ethylene (C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub>). TiO<jats:sub>2</jats:sub> intrinsically can activate CH<jats:sub>4</jats:sub> through photogenerated holes. However, taking advantage of this property for highly selective C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub> production remains a significant challenge. Herein, CuO nanoparticles loaded hollow cubic TiO<jats:sub>2</jats:sub> (CuO@hcTiO<jats:sub>2</jats:sub>) nanoparticles are synthesized via hydrolytic‐crystallization constrained morphology engineering combined with a chemical precipitation method. It exhibited an outstanding C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub> selectivity of 97.7% and a production efficiency of 3937.2 µmol g<jats:sup>−1</jats:sup><jats:sub>CuO </jats:sub>h<jats:sup>−1</jats:sup>, with excellent stability reaching 30 h. Compared with reported TiO<jats:sub>2</jats:sub> based photocatalysts, the selectivity of C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub> from CuO@TiO<jats:sub>2</jats:sub> increased by 2~20 fold. Mechanistic investigations suggest that CuO nanoparticles loaded on TiO<jats:sub>2</jats:sub> act as active sites for <jats:sup>*</jats:sup>CH<jats:sub>3</jats:sub> capture due to the partially filled d orbitals. And the type‐I heterojunction between CuO and TiO<jats:sub>2</jats:sub> promotes photogenerated holes migration from TiO<jats:sub>2</jats:sub> to the CuO, facilitating the dehydrogenation of adsorbed <jats:sup>*</jats:sup>CH<jats:sub>3</jats:sub> to <jats:sup>*</jats:sup>CH<jats:sub>2</jats:sub> and subsequent coupling to C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub>. This work provides a promising strategy for designing photocatalysts to efficiently synthesis C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub> via PNOCM.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"86 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CuO@TiO2 Hollow Cubes Enable Highly Selective and Stable Photocatalytic Non‐Oxidative Methane Coupling to Ethylene\",\"authors\":\"Xiaojun Guo, Yuqi Geng, Qingshan Zhu\",\"doi\":\"10.1002/adfm.202521714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic non‐oxidative coupling of methane (PNOCM) provides a green and sustainable route to the synthesis of ethylene (C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub>). TiO<jats:sub>2</jats:sub> intrinsically can activate CH<jats:sub>4</jats:sub> through photogenerated holes. However, taking advantage of this property for highly selective C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub> production remains a significant challenge. Herein, CuO nanoparticles loaded hollow cubic TiO<jats:sub>2</jats:sub> (CuO@hcTiO<jats:sub>2</jats:sub>) nanoparticles are synthesized via hydrolytic‐crystallization constrained morphology engineering combined with a chemical precipitation method. It exhibited an outstanding C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub> selectivity of 97.7% and a production efficiency of 3937.2 µmol g<jats:sup>−1</jats:sup><jats:sub>CuO </jats:sub>h<jats:sup>−1</jats:sup>, with excellent stability reaching 30 h. Compared with reported TiO<jats:sub>2</jats:sub> based photocatalysts, the selectivity of C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub> from CuO@TiO<jats:sub>2</jats:sub> increased by 2~20 fold. Mechanistic investigations suggest that CuO nanoparticles loaded on TiO<jats:sub>2</jats:sub> act as active sites for <jats:sup>*</jats:sup>CH<jats:sub>3</jats:sub> capture due to the partially filled d orbitals. And the type‐I heterojunction between CuO and TiO<jats:sub>2</jats:sub> promotes photogenerated holes migration from TiO<jats:sub>2</jats:sub> to the CuO, facilitating the dehydrogenation of adsorbed <jats:sup>*</jats:sup>CH<jats:sub>3</jats:sub> to <jats:sup>*</jats:sup>CH<jats:sub>2</jats:sub> and subsequent coupling to C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub>. This work provides a promising strategy for designing photocatalysts to efficiently synthesis C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub> via PNOCM.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202521714\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202521714","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化甲烷非氧化偶联(PNOCM)为乙烯(C2H4)的合成提供了一条绿色和可持续的途径。TiO2本质上可以通过光生空穴激活CH4。然而,利用这一特性生产高选择性的C2H4仍然是一个重大挑战。本文通过水解结晶约束形貌工程结合化学沉淀法合成了CuO纳米粒子负载空心立方TiO2 (CuO@hcTiO2)纳米粒子。对C2H4的选择性为97.7%,生产效率为3937.2µmol g−1CuO h−1,稳定性达到30 h。与已有报道的TiO2基光催化剂相比,CuO@TiO2对C2H4的选择性提高了2~20倍。机理研究表明,负载在TiO2上的CuO纳米粒子由于d轨道部分填充而成为捕获*CH3的活性位点。CuO和TiO2之间的I型异质结促进了光生空穴从TiO2向CuO的迁移,促进了吸附的*CH3脱氢到*CH2并随后偶联到C2H4。本研究为设计PNOCM高效合成C2H4光催化剂提供了一种新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CuO@TiO2 Hollow Cubes Enable Highly Selective and Stable Photocatalytic Non‐Oxidative Methane Coupling to Ethylene
Photocatalytic non‐oxidative coupling of methane (PNOCM) provides a green and sustainable route to the synthesis of ethylene (C2H4). TiO2 intrinsically can activate CH4 through photogenerated holes. However, taking advantage of this property for highly selective C2H4 production remains a significant challenge. Herein, CuO nanoparticles loaded hollow cubic TiO2 (CuO@hcTiO2) nanoparticles are synthesized via hydrolytic‐crystallization constrained morphology engineering combined with a chemical precipitation method. It exhibited an outstanding C2H4 selectivity of 97.7% and a production efficiency of 3937.2 µmol g−1CuO h−1, with excellent stability reaching 30 h. Compared with reported TiO2 based photocatalysts, the selectivity of C2H4 from CuO@TiO2 increased by 2~20 fold. Mechanistic investigations suggest that CuO nanoparticles loaded on TiO2 act as active sites for *CH3 capture due to the partially filled d orbitals. And the type‐I heterojunction between CuO and TiO2 promotes photogenerated holes migration from TiO2 to the CuO, facilitating the dehydrogenation of adsorbed *CH3 to *CH2 and subsequent coupling to C2H4. This work provides a promising strategy for designing photocatalysts to efficiently synthesis C2H4 via PNOCM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信