Yiheng Shao, Boyi Pang, Liam Bird, James B. Robinson, Paul R. Shearing
{"title":"锂硫电池设计的当代趋势:液态、准固态和全固态结构和机制的比较综述","authors":"Yiheng Shao, Boyi Pang, Liam Bird, James B. Robinson, Paul R. Shearing","doi":"10.1002/aenm.202503239","DOIUrl":null,"url":null,"abstract":"The lithium sulfur battery offers disruptive potential for applications that demand high energy density, and sustainable materials supply chains. Whilst the liquid‐based Li‐S technology has studied for decades, it is only comparatively recently that the chemistry has gained significant commercial traction. Historically significant and persistent challenges have hampered the technology, most pressingly, poor cyclability; however, recent efforts have demonstrated viable routes to overcome these impediments, with commercial traction increasing across the globe. These developments have addressed commercialization barriers, including the use of LiNO<jats:sub>3</jats:sub> as an electrolyte additive. For example, recent activity has shown progress toward more ‘solid‐state’ conversion mechanisms, including the so‐called ‘quasi‐solid state’ system. The contemporary research landscape across liquid, quasi‐ and all‐solid‐state Li‐S chemistries is reviewed. For each, a didactic overview of the underpinning operation is provided, and the literature on new mechanistic understanding, state‐of‐the‐art characterization and materials solutions is comprehensively examined. The Li‐S battery is at an inflection point in commercial deployment; this review aims to highlight the need to increase the focus of academic research on overcoming the remaining barriers to commercialization whilst continuing to identify fundamental operating mechanisms and material developments to accelerate the realization of the potential of this chemistry.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"6 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contemporary Trends in Lithium‐Sulfur Battery Design: A Comparative Review of Liquid, Quasi‐Solid, and All‐Solid‐State Architectures and Mechanisms\",\"authors\":\"Yiheng Shao, Boyi Pang, Liam Bird, James B. Robinson, Paul R. Shearing\",\"doi\":\"10.1002/aenm.202503239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lithium sulfur battery offers disruptive potential for applications that demand high energy density, and sustainable materials supply chains. Whilst the liquid‐based Li‐S technology has studied for decades, it is only comparatively recently that the chemistry has gained significant commercial traction. Historically significant and persistent challenges have hampered the technology, most pressingly, poor cyclability; however, recent efforts have demonstrated viable routes to overcome these impediments, with commercial traction increasing across the globe. These developments have addressed commercialization barriers, including the use of LiNO<jats:sub>3</jats:sub> as an electrolyte additive. For example, recent activity has shown progress toward more ‘solid‐state’ conversion mechanisms, including the so‐called ‘quasi‐solid state’ system. The contemporary research landscape across liquid, quasi‐ and all‐solid‐state Li‐S chemistries is reviewed. For each, a didactic overview of the underpinning operation is provided, and the literature on new mechanistic understanding, state‐of‐the‐art characterization and materials solutions is comprehensively examined. The Li‐S battery is at an inflection point in commercial deployment; this review aims to highlight the need to increase the focus of academic research on overcoming the remaining barriers to commercialization whilst continuing to identify fundamental operating mechanisms and material developments to accelerate the realization of the potential of this chemistry.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202503239\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202503239","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Contemporary Trends in Lithium‐Sulfur Battery Design: A Comparative Review of Liquid, Quasi‐Solid, and All‐Solid‐State Architectures and Mechanisms
The lithium sulfur battery offers disruptive potential for applications that demand high energy density, and sustainable materials supply chains. Whilst the liquid‐based Li‐S technology has studied for decades, it is only comparatively recently that the chemistry has gained significant commercial traction. Historically significant and persistent challenges have hampered the technology, most pressingly, poor cyclability; however, recent efforts have demonstrated viable routes to overcome these impediments, with commercial traction increasing across the globe. These developments have addressed commercialization barriers, including the use of LiNO3 as an electrolyte additive. For example, recent activity has shown progress toward more ‘solid‐state’ conversion mechanisms, including the so‐called ‘quasi‐solid state’ system. The contemporary research landscape across liquid, quasi‐ and all‐solid‐state Li‐S chemistries is reviewed. For each, a didactic overview of the underpinning operation is provided, and the literature on new mechanistic understanding, state‐of‐the‐art characterization and materials solutions is comprehensively examined. The Li‐S battery is at an inflection point in commercial deployment; this review aims to highlight the need to increase the focus of academic research on overcoming the remaining barriers to commercialization whilst continuing to identify fundamental operating mechanisms and material developments to accelerate the realization of the potential of this chemistry.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.