{"title":"引力波退相干量子叠加","authors":"Flynn Linton and Shubhanshu Tiwari","doi":"10.1088/1361-6382/ae0d27","DOIUrl":null,"url":null,"abstract":"Understanding the interplay between quantum mechanical systems and gravity is a crucial step towards unifying these two fundamental ideas. Recent theoretical developments have explored how global properties of spacetime would cause a quantum spatial superposition to lose coherence. In particular, this loss of coherence is closely related to the memory effect, which is a prominent feature of gravitational radiation. In this work, we explore how a burst of gravitational radiation from a far-away source would decohere a quantum superposition. We identify the individual contributions to the decoherence from the memory and oscillatory components of the gravitational wave source, corresponding to hard and soft graviton emissions, respectively. In general, the memory contributions dominate, while the oscillatory component of the decoherence is strongly dependent on the phase of the burst when it is switched off. This work demonstrates how quantum systems can lose coherence from interactions with a classical gravitational field. We also comment on the electromagnetic analogue of this effect and discuss its correspondence to the gravitational case.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"53 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational waves decohere quantum superpositions\",\"authors\":\"Flynn Linton and Shubhanshu Tiwari\",\"doi\":\"10.1088/1361-6382/ae0d27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the interplay between quantum mechanical systems and gravity is a crucial step towards unifying these two fundamental ideas. Recent theoretical developments have explored how global properties of spacetime would cause a quantum spatial superposition to lose coherence. In particular, this loss of coherence is closely related to the memory effect, which is a prominent feature of gravitational radiation. In this work, we explore how a burst of gravitational radiation from a far-away source would decohere a quantum superposition. We identify the individual contributions to the decoherence from the memory and oscillatory components of the gravitational wave source, corresponding to hard and soft graviton emissions, respectively. In general, the memory contributions dominate, while the oscillatory component of the decoherence is strongly dependent on the phase of the burst when it is switched off. This work demonstrates how quantum systems can lose coherence from interactions with a classical gravitational field. We also comment on the electromagnetic analogue of this effect and discuss its correspondence to the gravitational case.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ae0d27\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ae0d27","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Understanding the interplay between quantum mechanical systems and gravity is a crucial step towards unifying these two fundamental ideas. Recent theoretical developments have explored how global properties of spacetime would cause a quantum spatial superposition to lose coherence. In particular, this loss of coherence is closely related to the memory effect, which is a prominent feature of gravitational radiation. In this work, we explore how a burst of gravitational radiation from a far-away source would decohere a quantum superposition. We identify the individual contributions to the decoherence from the memory and oscillatory components of the gravitational wave source, corresponding to hard and soft graviton emissions, respectively. In general, the memory contributions dominate, while the oscillatory component of the decoherence is strongly dependent on the phase of the burst when it is switched off. This work demonstrates how quantum systems can lose coherence from interactions with a classical gravitational field. We also comment on the electromagnetic analogue of this effect and discuss its correspondence to the gravitational case.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.