{"title":"序列独立的6mA甲基转移酶用于表观遗传分析和编辑。","authors":"Jiachen Zhang, Yumiao Zhang, Jinghan Diao, Yifan Liu, Shan Gao","doi":"10.1016/j.tig.2025.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>Gene activity is intricately shaped by its chromatin environment. Deciphering the chromatin landscape is essential for understanding the complex regulatory networks governing gene function. The newly re-recognized DNA N<sup>6</sup>-methyladenine (6mA) is relatively scarce in multicellular eukaryotes, which has facilitated the development of innovative chromatin profiling approaches employing sequence-independent 6mA methyltransferases (MTases) to introduce exogenous 6mA. In this review, we summarize recent advances in leveraging exogenous 6mA deposition and long-read sequencing in three major applications: chromatin landscape profiling, protein-DNA interaction mapping, and targeted epigenetic editing. For each, we outline representative workflows, highlight technical advantages, and discuss current challenges and prospects for optimization. Together, this review underscores the emerging power of exogenous 6mA as a versatile tool for decoding chromatin architecture and gene regulation.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequence-independent 6mA methyltransferases for epigenetic profiling and editing.\",\"authors\":\"Jiachen Zhang, Yumiao Zhang, Jinghan Diao, Yifan Liu, Shan Gao\",\"doi\":\"10.1016/j.tig.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene activity is intricately shaped by its chromatin environment. Deciphering the chromatin landscape is essential for understanding the complex regulatory networks governing gene function. The newly re-recognized DNA N<sup>6</sup>-methyladenine (6mA) is relatively scarce in multicellular eukaryotes, which has facilitated the development of innovative chromatin profiling approaches employing sequence-independent 6mA methyltransferases (MTases) to introduce exogenous 6mA. In this review, we summarize recent advances in leveraging exogenous 6mA deposition and long-read sequencing in three major applications: chromatin landscape profiling, protein-DNA interaction mapping, and targeted epigenetic editing. For each, we outline representative workflows, highlight technical advantages, and discuss current challenges and prospects for optimization. Together, this review underscores the emerging power of exogenous 6mA as a versatile tool for decoding chromatin architecture and gene regulation.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2025.09.002\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2025.09.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Sequence-independent 6mA methyltransferases for epigenetic profiling and editing.
Gene activity is intricately shaped by its chromatin environment. Deciphering the chromatin landscape is essential for understanding the complex regulatory networks governing gene function. The newly re-recognized DNA N6-methyladenine (6mA) is relatively scarce in multicellular eukaryotes, which has facilitated the development of innovative chromatin profiling approaches employing sequence-independent 6mA methyltransferases (MTases) to introduce exogenous 6mA. In this review, we summarize recent advances in leveraging exogenous 6mA deposition and long-read sequencing in three major applications: chromatin landscape profiling, protein-DNA interaction mapping, and targeted epigenetic editing. For each, we outline representative workflows, highlight technical advantages, and discuss current challenges and prospects for optimization. Together, this review underscores the emerging power of exogenous 6mA as a versatile tool for decoding chromatin architecture and gene regulation.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.