Yoonho Na, Kyuri Kim, Hyungjoo Cho, Sung-Joon Ye, Hwiyoung Kim, Sung Soo Ahn, Ji Eun Park, Jimin Lee
{"title":"基于风格迁移GAN的拉普拉斯滤波注意在脑肿瘤MRI植入中的应用。","authors":"Yoonho Na, Kyuri Kim, Hyungjoo Cho, Sung-Joon Ye, Hwiyoung Kim, Sung Soo Ahn, Ji Eun Park, Jimin Lee","doi":"10.1038/s41598-025-19421-9","DOIUrl":null,"url":null,"abstract":"<p><p>Training deep neural networks with multi-domain data generally gives more robustness and accuracy than training with single domain data, leading to the development of many deep learning-based algorithms using multi-domain data. However, if part of the input data is unavailable due to missing or corrupted data, a significant bias can occur, a problem that may be relatively more critical in medical applications where patients may be negatively affected. In this study, we propose the Laplacian filter attention with style transfer generative adversarial network (LASTGAN) to solve the problem of missing sequences in brain tumor magnetic resonance imaging (MRI). Our method combines image imputation and image-to-image translation to accurately synthesize specific sequences of missing MR images. LASTGAN can accurately synthesize both overall anatomical structures and tumor regions of the brain in MR images by employing a novel attention module that utilizes a Laplacian filter. Additionally, among the other sub-networks, the generator injects a style vector of the missing domain that is subsequently inferred by the style encoder, while the style mapper assists the generator in synthesizing domain-specific images. We show that the proposed model, LASTGAN, synthesizes high quality MR images with respect to other existing GAN-based methods. Furthermore, we validate the use of LASTGAN for data imputation or augmentation through segmentation experiments.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"35453"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laplacian filter attention with style transfer GAN for brain tumor MRI imputation.\",\"authors\":\"Yoonho Na, Kyuri Kim, Hyungjoo Cho, Sung-Joon Ye, Hwiyoung Kim, Sung Soo Ahn, Ji Eun Park, Jimin Lee\",\"doi\":\"10.1038/s41598-025-19421-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Training deep neural networks with multi-domain data generally gives more robustness and accuracy than training with single domain data, leading to the development of many deep learning-based algorithms using multi-domain data. However, if part of the input data is unavailable due to missing or corrupted data, a significant bias can occur, a problem that may be relatively more critical in medical applications where patients may be negatively affected. In this study, we propose the Laplacian filter attention with style transfer generative adversarial network (LASTGAN) to solve the problem of missing sequences in brain tumor magnetic resonance imaging (MRI). Our method combines image imputation and image-to-image translation to accurately synthesize specific sequences of missing MR images. LASTGAN can accurately synthesize both overall anatomical structures and tumor regions of the brain in MR images by employing a novel attention module that utilizes a Laplacian filter. Additionally, among the other sub-networks, the generator injects a style vector of the missing domain that is subsequently inferred by the style encoder, while the style mapper assists the generator in synthesizing domain-specific images. We show that the proposed model, LASTGAN, synthesizes high quality MR images with respect to other existing GAN-based methods. Furthermore, we validate the use of LASTGAN for data imputation or augmentation through segmentation experiments.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"35453\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-19421-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-19421-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Laplacian filter attention with style transfer GAN for brain tumor MRI imputation.
Training deep neural networks with multi-domain data generally gives more robustness and accuracy than training with single domain data, leading to the development of many deep learning-based algorithms using multi-domain data. However, if part of the input data is unavailable due to missing or corrupted data, a significant bias can occur, a problem that may be relatively more critical in medical applications where patients may be negatively affected. In this study, we propose the Laplacian filter attention with style transfer generative adversarial network (LASTGAN) to solve the problem of missing sequences in brain tumor magnetic resonance imaging (MRI). Our method combines image imputation and image-to-image translation to accurately synthesize specific sequences of missing MR images. LASTGAN can accurately synthesize both overall anatomical structures and tumor regions of the brain in MR images by employing a novel attention module that utilizes a Laplacian filter. Additionally, among the other sub-networks, the generator injects a style vector of the missing domain that is subsequently inferred by the style encoder, while the style mapper assists the generator in synthesizing domain-specific images. We show that the proposed model, LASTGAN, synthesizes high quality MR images with respect to other existing GAN-based methods. Furthermore, we validate the use of LASTGAN for data imputation or augmentation through segmentation experiments.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.