{"title":"隧道使能的可编程交换机混淆网络拓扑,以防御软件定义网络中的链路泛洪侦察。","authors":"Xiang Li, Jungmin Lee, Junggab Son, Yeonjoon Lee","doi":"10.1038/s41598-025-19566-7","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, Software-Defined Networking (SDN) has emerged as an increasingly popular network paradigm due to its virtualization capabilities and flexibility. However, its robustness in link connectivity is threatened by Link Flooding Attacks (LFAs). To launch LFAs, adversaries use probing tools to infer network topologies and identify target links with bottlenecks. Thus, protecting SDN topologies against disclosure is crucial to ensure system security and preserve infrastructure functionality. We propose TEPS (Tunnel-Enabled Programmable Switches), a proactive defense system that dynamically obfuscates network topologies to defend against adversarial reconnaissance in SDN. TEPS generates false topologies by leveraging the flexibility of emerging programmable switches to construct customized tunnels and manipulate probing packets using the P4 language. This prevents adversaries from obtaining accurate knowledge of network topologies, making it difficult to reconstruct the true topologies. Furthermore, TEPS counters Round-Trip Time (RTT)-based fingerprinting attacks by dynamically adjusting packet delays and routing traffic to conceal RTT variations. Our evaluation demonstrates that TEPS effectively reduces the distribution of link importance in network topologies compared to the latest proactive defense method, thereby concealing bottlenecks and disrupting adversarial topology reconnaissance, including thwarting RTT-based fingerprinting attempts. Furthermore, by leveraging the capabilities of P4 switches, TEPS introduces minimal network overhead, with at most a 3% reduction in throughput and a 9.57% increase in resource utilization, showing practical feasibility under real-world operational constraints. By implementing TEPS, network administrators can enhance the security of their SDN infrastructures against LFAs and maintain robust connectivity through a lightweight approach.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"35549"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunnel enabled programmable switches obfuscate network topology to defend against link flooding reconnaissance in software defined networking.\",\"authors\":\"Xiang Li, Jungmin Lee, Junggab Son, Yeonjoon Lee\",\"doi\":\"10.1038/s41598-025-19566-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, Software-Defined Networking (SDN) has emerged as an increasingly popular network paradigm due to its virtualization capabilities and flexibility. However, its robustness in link connectivity is threatened by Link Flooding Attacks (LFAs). To launch LFAs, adversaries use probing tools to infer network topologies and identify target links with bottlenecks. Thus, protecting SDN topologies against disclosure is crucial to ensure system security and preserve infrastructure functionality. We propose TEPS (Tunnel-Enabled Programmable Switches), a proactive defense system that dynamically obfuscates network topologies to defend against adversarial reconnaissance in SDN. TEPS generates false topologies by leveraging the flexibility of emerging programmable switches to construct customized tunnels and manipulate probing packets using the P4 language. This prevents adversaries from obtaining accurate knowledge of network topologies, making it difficult to reconstruct the true topologies. Furthermore, TEPS counters Round-Trip Time (RTT)-based fingerprinting attacks by dynamically adjusting packet delays and routing traffic to conceal RTT variations. Our evaluation demonstrates that TEPS effectively reduces the distribution of link importance in network topologies compared to the latest proactive defense method, thereby concealing bottlenecks and disrupting adversarial topology reconnaissance, including thwarting RTT-based fingerprinting attempts. Furthermore, by leveraging the capabilities of P4 switches, TEPS introduces minimal network overhead, with at most a 3% reduction in throughput and a 9.57% increase in resource utilization, showing practical feasibility under real-world operational constraints. By implementing TEPS, network administrators can enhance the security of their SDN infrastructures against LFAs and maintain robust connectivity through a lightweight approach.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"35549\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-19566-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-19566-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Tunnel enabled programmable switches obfuscate network topology to defend against link flooding reconnaissance in software defined networking.
Recently, Software-Defined Networking (SDN) has emerged as an increasingly popular network paradigm due to its virtualization capabilities and flexibility. However, its robustness in link connectivity is threatened by Link Flooding Attacks (LFAs). To launch LFAs, adversaries use probing tools to infer network topologies and identify target links with bottlenecks. Thus, protecting SDN topologies against disclosure is crucial to ensure system security and preserve infrastructure functionality. We propose TEPS (Tunnel-Enabled Programmable Switches), a proactive defense system that dynamically obfuscates network topologies to defend against adversarial reconnaissance in SDN. TEPS generates false topologies by leveraging the flexibility of emerging programmable switches to construct customized tunnels and manipulate probing packets using the P4 language. This prevents adversaries from obtaining accurate knowledge of network topologies, making it difficult to reconstruct the true topologies. Furthermore, TEPS counters Round-Trip Time (RTT)-based fingerprinting attacks by dynamically adjusting packet delays and routing traffic to conceal RTT variations. Our evaluation demonstrates that TEPS effectively reduces the distribution of link importance in network topologies compared to the latest proactive defense method, thereby concealing bottlenecks and disrupting adversarial topology reconnaissance, including thwarting RTT-based fingerprinting attempts. Furthermore, by leveraging the capabilities of P4 switches, TEPS introduces minimal network overhead, with at most a 3% reduction in throughput and a 9.57% increase in resource utilization, showing practical feasibility under real-world operational constraints. By implementing TEPS, network administrators can enhance the security of their SDN infrastructures against LFAs and maintain robust connectivity through a lightweight approach.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.