{"title":"微生物-肠-脑轴和益生菌:治疗阿尔茨海默病的潜在治疗策略。","authors":"Thekkuttuparambil Ananthanarayanan Ajith, Jagal Kishore Sreejith","doi":"10.1080/1028415X.2025.2567429","DOIUrl":null,"url":null,"abstract":"<p><p>The gut-brain axis explains that changes in the intestinal microbiota influence Alzheimer's disease (AD). Short-chain fatty acids produced by the gut microbiome regulate the permeability of the gut and blood-brain barrier. Furthermore, they upregulate brain-derived neurotrophic factor, promote angiogenesis and neurogenesis, and control tau and Aβ proteins, microglial activity, apoptosis, oxidative damage, M1/M2 polarization of microglia, and neuroinflammation, which eventually improves cognitive impairment. This effect is mediated by modification of serotonin, dopamine, and γ-aminobutyric acid levels. Compared to healthy controls, mild cognitive impairment and AD were associated with low levels of <i>Firmicutes</i> and <i>Bifidobacterium</i> and high levels of <i>Proteobacteria</i> and <i>Bacteroidetes</i>. <i>Lactobacillus</i> and <i>Bifidobacterium</i> species were effective in improving cognitive function. More longitudinal research is needed to investigate precision medicine in patients with dysbiosis in the preclinical stages of the disease. This review describes the role of the gut microbiome and probiotics in AD.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1-17"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiota-gut-brain axis and probiotics: potential therapeutic strategies for treating Alzheimer's disease.\",\"authors\":\"Thekkuttuparambil Ananthanarayanan Ajith, Jagal Kishore Sreejith\",\"doi\":\"10.1080/1028415X.2025.2567429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gut-brain axis explains that changes in the intestinal microbiota influence Alzheimer's disease (AD). Short-chain fatty acids produced by the gut microbiome regulate the permeability of the gut and blood-brain barrier. Furthermore, they upregulate brain-derived neurotrophic factor, promote angiogenesis and neurogenesis, and control tau and Aβ proteins, microglial activity, apoptosis, oxidative damage, M1/M2 polarization of microglia, and neuroinflammation, which eventually improves cognitive impairment. This effect is mediated by modification of serotonin, dopamine, and γ-aminobutyric acid levels. Compared to healthy controls, mild cognitive impairment and AD were associated with low levels of <i>Firmicutes</i> and <i>Bifidobacterium</i> and high levels of <i>Proteobacteria</i> and <i>Bacteroidetes</i>. <i>Lactobacillus</i> and <i>Bifidobacterium</i> species were effective in improving cognitive function. More longitudinal research is needed to investigate precision medicine in patients with dysbiosis in the preclinical stages of the disease. This review describes the role of the gut microbiome and probiotics in AD.</p>\",\"PeriodicalId\":19423,\"journal\":{\"name\":\"Nutritional Neuroscience\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutritional Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1028415X.2025.2567429\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutritional Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1028415X.2025.2567429","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Microbiota-gut-brain axis and probiotics: potential therapeutic strategies for treating Alzheimer's disease.
The gut-brain axis explains that changes in the intestinal microbiota influence Alzheimer's disease (AD). Short-chain fatty acids produced by the gut microbiome regulate the permeability of the gut and blood-brain barrier. Furthermore, they upregulate brain-derived neurotrophic factor, promote angiogenesis and neurogenesis, and control tau and Aβ proteins, microglial activity, apoptosis, oxidative damage, M1/M2 polarization of microglia, and neuroinflammation, which eventually improves cognitive impairment. This effect is mediated by modification of serotonin, dopamine, and γ-aminobutyric acid levels. Compared to healthy controls, mild cognitive impairment and AD were associated with low levels of Firmicutes and Bifidobacterium and high levels of Proteobacteria and Bacteroidetes. Lactobacillus and Bifidobacterium species were effective in improving cognitive function. More longitudinal research is needed to investigate precision medicine in patients with dysbiosis in the preclinical stages of the disease. This review describes the role of the gut microbiome and probiotics in AD.
期刊介绍:
Nutritional Neuroscience is an international, interdisciplinary broad-based, online journal for reporting both basic and clinical research in the field of nutrition that relates to the central and peripheral nervous system. Studies may include the role of different components of normal diet (protein, carbohydrate, fat, moderate use of alcohol, etc.), dietary supplements (minerals, vitamins, hormones, herbs, etc.), and food additives (artificial flavours, colours, sweeteners, etc.) on neurochemistry, neurobiology, and behavioural biology of all vertebrate and invertebrate organisms. Ideally this journal will serve as a forum for neuroscientists, nutritionists, neurologists, psychiatrists, and those interested in preventive medicine.