Ceri J Weber, Alexander J Weitzel, Alexander Y Liu, Erica G Gacasan, Susan C Chapman, Robert L Sah, Kimberly L Cooper
{"title":"小鼠和跳鼠尾椎比例发育和进化的细胞和遗传机制。","authors":"Ceri J Weber, Alexander J Weitzel, Alexander Y Liu, Erica G Gacasan, Susan C Chapman, Robert L Sah, Kimberly L Cooper","doi":"10.1038/s41467-025-63606-9","DOIUrl":null,"url":null,"abstract":"<p><p>Limbs and vertebrae elongate by endochondral ossification, but local growth control is highly modular such that not all bones are the same length. Compared to limbs, which have a different evolutionary and developmental origin, far less is known about how individual vertebrae establish proportion. Using the jerboa and mouse tail skeletons, we find that cell number is a common driver of limb and vertebral proportion in both species. However, chondrocyte hypertrophy, which is a major driver of proportion in all mammal limbs, is limited to the extreme disproportionate growth of jerboa mid-tail vertebrae. The genes associated with differential growth in the vertebral skeleton overlap significantly, but not substantially, with genes associated with limb proportion. Among shared candidates, loss of Natriuretic Peptide Receptor 3 in mice causes disproportionate elongation of the proximal and mid-tail vertebrae, in addition to the proximal limb. Our findings therefore, reveal cellular processes that tune the growth of individual vertebrae while also identifying natriuretic peptide signaling among genetic control mechanisms that shape the entire skeleton.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"9014"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514186/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cellular and genetic mechanisms that shape the development and evolution of tail vertebral proportion in mice and jerboas.\",\"authors\":\"Ceri J Weber, Alexander J Weitzel, Alexander Y Liu, Erica G Gacasan, Susan C Chapman, Robert L Sah, Kimberly L Cooper\",\"doi\":\"10.1038/s41467-025-63606-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Limbs and vertebrae elongate by endochondral ossification, but local growth control is highly modular such that not all bones are the same length. Compared to limbs, which have a different evolutionary and developmental origin, far less is known about how individual vertebrae establish proportion. Using the jerboa and mouse tail skeletons, we find that cell number is a common driver of limb and vertebral proportion in both species. However, chondrocyte hypertrophy, which is a major driver of proportion in all mammal limbs, is limited to the extreme disproportionate growth of jerboa mid-tail vertebrae. The genes associated with differential growth in the vertebral skeleton overlap significantly, but not substantially, with genes associated with limb proportion. Among shared candidates, loss of Natriuretic Peptide Receptor 3 in mice causes disproportionate elongation of the proximal and mid-tail vertebrae, in addition to the proximal limb. Our findings therefore, reveal cellular processes that tune the growth of individual vertebrae while also identifying natriuretic peptide signaling among genetic control mechanisms that shape the entire skeleton.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"9014\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63606-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63606-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Cellular and genetic mechanisms that shape the development and evolution of tail vertebral proportion in mice and jerboas.
Limbs and vertebrae elongate by endochondral ossification, but local growth control is highly modular such that not all bones are the same length. Compared to limbs, which have a different evolutionary and developmental origin, far less is known about how individual vertebrae establish proportion. Using the jerboa and mouse tail skeletons, we find that cell number is a common driver of limb and vertebral proportion in both species. However, chondrocyte hypertrophy, which is a major driver of proportion in all mammal limbs, is limited to the extreme disproportionate growth of jerboa mid-tail vertebrae. The genes associated with differential growth in the vertebral skeleton overlap significantly, but not substantially, with genes associated with limb proportion. Among shared candidates, loss of Natriuretic Peptide Receptor 3 in mice causes disproportionate elongation of the proximal and mid-tail vertebrae, in addition to the proximal limb. Our findings therefore, reveal cellular processes that tune the growth of individual vertebrae while also identifying natriuretic peptide signaling among genetic control mechanisms that shape the entire skeleton.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.