阳离子脂质与DNA纳米笼的硅自组装和络合动力学以增强脂质感染。

IF 1.9 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2025-09-01 DOI:10.1116/6.0004756
Sandip Mandal, Dhiraj Bhatia, Prabal K Maiti
{"title":"阳离子脂质与DNA纳米笼的硅自组装和络合动力学以增强脂质感染。","authors":"Sandip Mandal, Dhiraj Bhatia, Prabal K Maiti","doi":"10.1116/6.0004756","DOIUrl":null,"url":null,"abstract":"<p><p>DNA nanostructures are promising materials for drug delivery due to their unique topology, shape, size control, biocompatibility, structural stability, and blood-brain-barrier penetration capability. However, their cellular permeability is hindered by strong electrostatic repulsion from negatively charged cellular membranes, posing a significant obstacle to the use of DNA nanostructures as a drug delivery vehicle. Recent experimental studies have shown enhanced cellular uptake for the conjugate binary mixtures of DNA Tetrahedron (TDN) with cationic lipid N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) compared to TDN alone. However, the cationic DOTMA lipid binding mechanism with the TDN nucleotides is still elusive. Using fully atomistic MD simulations, we aim to understand the molecular interactions that drive the formation and stability of the TDN-DOTMA binary complexes in a physiological environment. Our results uncovered that lipid concentration plays a crucial role in the energetics of the TDN-DOTMA association. We also report that distinct time scales are associated with the self-assembly of cationic DOTMA lipids first, followed by the complexation of self-assembled DOTMA lipid clusters with the TDN nucleotides, where electrostatics, hydrophobicity, and hydrogen bonding are the key interactions that drive the formation and stability of these complexes. Our results provide molecular insights into TDN-DOTMA interactions, highlighting the lipid self-assembly dynamics, complex stability, and morphology, paving the way for the better rational design of cationic lipid-functionalized DNA nanostructures for efficient drug delivery and transfection.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico self-assembly and complexation dynamics of cationic lipids with DNA nanocages to enhance lipofection.\",\"authors\":\"Sandip Mandal, Dhiraj Bhatia, Prabal K Maiti\",\"doi\":\"10.1116/6.0004756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA nanostructures are promising materials for drug delivery due to their unique topology, shape, size control, biocompatibility, structural stability, and blood-brain-barrier penetration capability. However, their cellular permeability is hindered by strong electrostatic repulsion from negatively charged cellular membranes, posing a significant obstacle to the use of DNA nanostructures as a drug delivery vehicle. Recent experimental studies have shown enhanced cellular uptake for the conjugate binary mixtures of DNA Tetrahedron (TDN) with cationic lipid N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) compared to TDN alone. However, the cationic DOTMA lipid binding mechanism with the TDN nucleotides is still elusive. Using fully atomistic MD simulations, we aim to understand the molecular interactions that drive the formation and stability of the TDN-DOTMA binary complexes in a physiological environment. Our results uncovered that lipid concentration plays a crucial role in the energetics of the TDN-DOTMA association. We also report that distinct time scales are associated with the self-assembly of cationic DOTMA lipids first, followed by the complexation of self-assembled DOTMA lipid clusters with the TDN nucleotides, where electrostatics, hydrophobicity, and hydrogen bonding are the key interactions that drive the formation and stability of these complexes. Our results provide molecular insights into TDN-DOTMA interactions, highlighting the lipid self-assembly dynamics, complex stability, and morphology, paving the way for the better rational design of cationic lipid-functionalized DNA nanostructures for efficient drug delivery and transfection.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004756\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004756","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

DNA纳米结构由于其独特的拓扑结构、形状、尺寸控制、生物相容性、结构稳定性和血脑屏障穿透能力,是一种很有前途的药物递送材料。然而,它们的细胞渗透性受到来自带负电荷细胞膜的强静电斥力的阻碍,这对使用DNA纳米结构作为药物递送载体构成了重大障碍。最近的实验研究表明,与单独的TDN相比,DNA四面体(TDN)与阳离子脂质N-[1-(2,3-二聚氧基)丙基]-N,N,N-三甲基氯化铵(DOTMA)的共轭二元混合物的细胞摄取增强。然而,阳离子DOTMA脂质与TDN核苷酸的结合机制仍不明确。利用全原子MD模拟,我们旨在了解生理环境中驱动TDN-DOTMA二元复合物形成和稳定性的分子相互作用。我们的研究结果发现,脂质浓度在TDN-DOTMA结合的能量学中起着至关重要的作用。我们还报道了不同的时间尺度首先与阳离子DOTMA脂质的自组装有关,然后是自组装的DOTMA脂簇与TDN核苷酸的络合,其中静电、疏水性和氢键是驱动这些复合物形成和稳定性的关键相互作用。我们的研究结果提供了对TDN-DOTMA相互作用的分子见解,突出了脂质自组装动力学、复合物稳定性和形态,为更合理地设计阳离子脂质功能化DNA纳米结构铺平了道路,从而实现有效的药物传递和转染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In silico self-assembly and complexation dynamics of cationic lipids with DNA nanocages to enhance lipofection.

DNA nanostructures are promising materials for drug delivery due to their unique topology, shape, size control, biocompatibility, structural stability, and blood-brain-barrier penetration capability. However, their cellular permeability is hindered by strong electrostatic repulsion from negatively charged cellular membranes, posing a significant obstacle to the use of DNA nanostructures as a drug delivery vehicle. Recent experimental studies have shown enhanced cellular uptake for the conjugate binary mixtures of DNA Tetrahedron (TDN) with cationic lipid N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) compared to TDN alone. However, the cationic DOTMA lipid binding mechanism with the TDN nucleotides is still elusive. Using fully atomistic MD simulations, we aim to understand the molecular interactions that drive the formation and stability of the TDN-DOTMA binary complexes in a physiological environment. Our results uncovered that lipid concentration plays a crucial role in the energetics of the TDN-DOTMA association. We also report that distinct time scales are associated with the self-assembly of cationic DOTMA lipids first, followed by the complexation of self-assembled DOTMA lipid clusters with the TDN nucleotides, where electrostatics, hydrophobicity, and hydrogen bonding are the key interactions that drive the formation and stability of these complexes. Our results provide molecular insights into TDN-DOTMA interactions, highlighting the lipid self-assembly dynamics, complex stability, and morphology, paving the way for the better rational design of cationic lipid-functionalized DNA nanostructures for efficient drug delivery and transfection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信