{"title":"阳离子脂质与DNA纳米笼的硅自组装和络合动力学以增强脂质感染。","authors":"Sandip Mandal, Dhiraj Bhatia, Prabal K Maiti","doi":"10.1116/6.0004756","DOIUrl":null,"url":null,"abstract":"<p><p>DNA nanostructures are promising materials for drug delivery due to their unique topology, shape, size control, biocompatibility, structural stability, and blood-brain-barrier penetration capability. However, their cellular permeability is hindered by strong electrostatic repulsion from negatively charged cellular membranes, posing a significant obstacle to the use of DNA nanostructures as a drug delivery vehicle. Recent experimental studies have shown enhanced cellular uptake for the conjugate binary mixtures of DNA Tetrahedron (TDN) with cationic lipid N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) compared to TDN alone. However, the cationic DOTMA lipid binding mechanism with the TDN nucleotides is still elusive. Using fully atomistic MD simulations, we aim to understand the molecular interactions that drive the formation and stability of the TDN-DOTMA binary complexes in a physiological environment. Our results uncovered that lipid concentration plays a crucial role in the energetics of the TDN-DOTMA association. We also report that distinct time scales are associated with the self-assembly of cationic DOTMA lipids first, followed by the complexation of self-assembled DOTMA lipid clusters with the TDN nucleotides, where electrostatics, hydrophobicity, and hydrogen bonding are the key interactions that drive the formation and stability of these complexes. Our results provide molecular insights into TDN-DOTMA interactions, highlighting the lipid self-assembly dynamics, complex stability, and morphology, paving the way for the better rational design of cationic lipid-functionalized DNA nanostructures for efficient drug delivery and transfection.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico self-assembly and complexation dynamics of cationic lipids with DNA nanocages to enhance lipofection.\",\"authors\":\"Sandip Mandal, Dhiraj Bhatia, Prabal K Maiti\",\"doi\":\"10.1116/6.0004756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA nanostructures are promising materials for drug delivery due to their unique topology, shape, size control, biocompatibility, structural stability, and blood-brain-barrier penetration capability. However, their cellular permeability is hindered by strong electrostatic repulsion from negatively charged cellular membranes, posing a significant obstacle to the use of DNA nanostructures as a drug delivery vehicle. Recent experimental studies have shown enhanced cellular uptake for the conjugate binary mixtures of DNA Tetrahedron (TDN) with cationic lipid N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) compared to TDN alone. However, the cationic DOTMA lipid binding mechanism with the TDN nucleotides is still elusive. Using fully atomistic MD simulations, we aim to understand the molecular interactions that drive the formation and stability of the TDN-DOTMA binary complexes in a physiological environment. Our results uncovered that lipid concentration plays a crucial role in the energetics of the TDN-DOTMA association. We also report that distinct time scales are associated with the self-assembly of cationic DOTMA lipids first, followed by the complexation of self-assembled DOTMA lipid clusters with the TDN nucleotides, where electrostatics, hydrophobicity, and hydrogen bonding are the key interactions that drive the formation and stability of these complexes. Our results provide molecular insights into TDN-DOTMA interactions, highlighting the lipid self-assembly dynamics, complex stability, and morphology, paving the way for the better rational design of cationic lipid-functionalized DNA nanostructures for efficient drug delivery and transfection.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004756\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004756","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
In silico self-assembly and complexation dynamics of cationic lipids with DNA nanocages to enhance lipofection.
DNA nanostructures are promising materials for drug delivery due to their unique topology, shape, size control, biocompatibility, structural stability, and blood-brain-barrier penetration capability. However, their cellular permeability is hindered by strong electrostatic repulsion from negatively charged cellular membranes, posing a significant obstacle to the use of DNA nanostructures as a drug delivery vehicle. Recent experimental studies have shown enhanced cellular uptake for the conjugate binary mixtures of DNA Tetrahedron (TDN) with cationic lipid N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) compared to TDN alone. However, the cationic DOTMA lipid binding mechanism with the TDN nucleotides is still elusive. Using fully atomistic MD simulations, we aim to understand the molecular interactions that drive the formation and stability of the TDN-DOTMA binary complexes in a physiological environment. Our results uncovered that lipid concentration plays a crucial role in the energetics of the TDN-DOTMA association. We also report that distinct time scales are associated with the self-assembly of cationic DOTMA lipids first, followed by the complexation of self-assembled DOTMA lipid clusters with the TDN nucleotides, where electrostatics, hydrophobicity, and hydrogen bonding are the key interactions that drive the formation and stability of these complexes. Our results provide molecular insights into TDN-DOTMA interactions, highlighting the lipid self-assembly dynamics, complex stability, and morphology, paving the way for the better rational design of cationic lipid-functionalized DNA nanostructures for efficient drug delivery and transfection.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.