电场驱动的低阶煤产甲烷:破译直接种间电子转移和传统微生物途径的协同作用。

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Qing Feng, Chengwei Sun, Yong Zhao, Shaojie Yang, Hao Zi, Yingkun Zhang, Hongda Pan, Xinjian Zhang
{"title":"电场驱动的低阶煤产甲烷:破译直接种间电子转移和传统微生物途径的协同作用。","authors":"Qing Feng, Chengwei Sun, Yong Zhao, Shaojie Yang, Hao Zi, Yingkun Zhang, Hongda Pan, Xinjian Zhang","doi":"10.1016/j.biortech.2025.133457","DOIUrl":null,"url":null,"abstract":"<p><p>Low-rank coal represents a challenging substrate for biomethane production due to its low biodegradability, limiting conventional bioconversion efficiencies. This study employed an Electric Field-driven Anaerobic Digestion (EFAD) system to enhance methane production from lignite by stimulating both direct interspecies electron transfer (DIET) and classical methanogenic pathways (hydrogenotrophic and acetoclastic). Batch experiments demonstrated a 3.8-fold increase in methane yield under EFAD compared to conventional anaerobic digestion, with DIET accounting for approximately 22 % of methane production. Electrochemical impedance spectroscopy revealed reduced charge transfer resistance and enhanced redox activity, indicating improved electron transfer in the EFAD system. Microbial community analysis showed enrichment of electroactive bacteria and methanogens. Selective inhibition of methanogenic pathways confirmed the participation of targeted methanogens and highlighted the EFAD system's ability to mitigate pathway suppression via DIET enhancement. These results provide mechanistic insights that advance the potential of bioelectrochemical methods for efficient, scalable biomethane recovery from low-rank coal.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133457"},"PeriodicalIF":9.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric field-driven methanogenesis from low-rank coal: Deciphering synergistic role of direct interspecies electron transfer and conventional microbial pathways.\",\"authors\":\"Qing Feng, Chengwei Sun, Yong Zhao, Shaojie Yang, Hao Zi, Yingkun Zhang, Hongda Pan, Xinjian Zhang\",\"doi\":\"10.1016/j.biortech.2025.133457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low-rank coal represents a challenging substrate for biomethane production due to its low biodegradability, limiting conventional bioconversion efficiencies. This study employed an Electric Field-driven Anaerobic Digestion (EFAD) system to enhance methane production from lignite by stimulating both direct interspecies electron transfer (DIET) and classical methanogenic pathways (hydrogenotrophic and acetoclastic). Batch experiments demonstrated a 3.8-fold increase in methane yield under EFAD compared to conventional anaerobic digestion, with DIET accounting for approximately 22 % of methane production. Electrochemical impedance spectroscopy revealed reduced charge transfer resistance and enhanced redox activity, indicating improved electron transfer in the EFAD system. Microbial community analysis showed enrichment of electroactive bacteria and methanogens. Selective inhibition of methanogenic pathways confirmed the participation of targeted methanogens and highlighted the EFAD system's ability to mitigate pathway suppression via DIET enhancement. These results provide mechanistic insights that advance the potential of bioelectrochemical methods for efficient, scalable biomethane recovery from low-rank coal.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"133457\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.133457\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133457","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

由于低阶煤的生物可降解性低,限制了传统的生物转化效率,因此它是生物甲烷生产的一种具有挑战性的基质。本研究采用电场驱动厌氧消化(EFAD)系统,通过刺激直接种间电子转移(DIET)和经典的产甲烷途径(氢营养和醋酸分解)来提高褐煤的甲烷产量。批量实验表明,与传统厌氧消化相比,EFAD的甲烷产量增加了3.8倍,DIET约占甲烷产量的22% %。电化学阻抗谱显示电荷转移电阻降低,氧化还原活性增强,表明EFAD体系中的电子转移得到改善。微生物群落分析显示电活性菌和产甲烷菌富集。对产甲烷途径的选择性抑制证实了目标产甲烷菌的参与,并强调了EFAD系统通过DIET增强减轻途径抑制的能力。这些结果为提高生物电化学方法从低阶煤中高效、可扩展地回收生物甲烷的潜力提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electric field-driven methanogenesis from low-rank coal: Deciphering synergistic role of direct interspecies electron transfer and conventional microbial pathways.

Low-rank coal represents a challenging substrate for biomethane production due to its low biodegradability, limiting conventional bioconversion efficiencies. This study employed an Electric Field-driven Anaerobic Digestion (EFAD) system to enhance methane production from lignite by stimulating both direct interspecies electron transfer (DIET) and classical methanogenic pathways (hydrogenotrophic and acetoclastic). Batch experiments demonstrated a 3.8-fold increase in methane yield under EFAD compared to conventional anaerobic digestion, with DIET accounting for approximately 22 % of methane production. Electrochemical impedance spectroscopy revealed reduced charge transfer resistance and enhanced redox activity, indicating improved electron transfer in the EFAD system. Microbial community analysis showed enrichment of electroactive bacteria and methanogens. Selective inhibition of methanogenic pathways confirmed the participation of targeted methanogens and highlighted the EFAD system's ability to mitigate pathway suppression via DIET enhancement. These results provide mechanistic insights that advance the potential of bioelectrochemical methods for efficient, scalable biomethane recovery from low-rank coal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信