Adam T Clark, Lauren G Shoemaker, Jean-François Arnoldi, György Barabás, Rachel Germain, Oscar Godoy, Lauren Hallett, Canan Karakoç, Serguei Saavedra, Sebastian J Schreiber
{"title":"描述生态共存的实用指南。","authors":"Adam T Clark, Lauren G Shoemaker, Jean-François Arnoldi, György Barabás, Rachel Germain, Oscar Godoy, Lauren Hallett, Canan Karakoç, Serguei Saavedra, Sebastian J Schreiber","doi":"10.1111/brv.70079","DOIUrl":null,"url":null,"abstract":"<p><p>Coexistence is simultaneously one of the most fundamental concepts of ecology, and one of the most difficult to define. A particular challenge is that, despite a well-developed body of research, several different schools of thought have developed over the past century, leading to multiple independent, and largely isolated, branches of literature with distinct methodologies. Here, we provide a broad overview of the most common concepts and metrics currently used to detect and characterise ecological coexistence. We first introduce four classes of behaviour, which jointly describe the ways in which community dynamics can unfold: (i) the existence of a feasible steady state (or invariant set), i.e. where all coexisting species retain positive abundances in the long-term in the absence of interference by external forces; (ii) the existence of a local attractor that draws the community towards a feasible steady state from within a restricted set of starting conditions; (iii) the existence of a global attractor that draws the community towards feasible steady states from any non-zero starting condition; and (o) a null transient state, where species abundances vary over time irrespective of steady states and attractors. Next, we explain how these classes of behaviour relate to commonly used metrics for identifying and characterising coexistence, including analyses of parameter sensitivity, asymptotic return rates, invasion growth rates, and time to extinction. We then discuss the scope and limitations of each of these behavioural classes and corresponding metrics, with a particular focus on applications in empirical systems. Finally, we provide a potential workflow for matching empirical questions to theoretical tools, and present a brief prospectus looking forward to opportunities for advancing and integrating research on coexistence.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical guide to characterising ecological coexistence.\",\"authors\":\"Adam T Clark, Lauren G Shoemaker, Jean-François Arnoldi, György Barabás, Rachel Germain, Oscar Godoy, Lauren Hallett, Canan Karakoç, Serguei Saavedra, Sebastian J Schreiber\",\"doi\":\"10.1111/brv.70079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coexistence is simultaneously one of the most fundamental concepts of ecology, and one of the most difficult to define. A particular challenge is that, despite a well-developed body of research, several different schools of thought have developed over the past century, leading to multiple independent, and largely isolated, branches of literature with distinct methodologies. Here, we provide a broad overview of the most common concepts and metrics currently used to detect and characterise ecological coexistence. We first introduce four classes of behaviour, which jointly describe the ways in which community dynamics can unfold: (i) the existence of a feasible steady state (or invariant set), i.e. where all coexisting species retain positive abundances in the long-term in the absence of interference by external forces; (ii) the existence of a local attractor that draws the community towards a feasible steady state from within a restricted set of starting conditions; (iii) the existence of a global attractor that draws the community towards feasible steady states from any non-zero starting condition; and (o) a null transient state, where species abundances vary over time irrespective of steady states and attractors. Next, we explain how these classes of behaviour relate to commonly used metrics for identifying and characterising coexistence, including analyses of parameter sensitivity, asymptotic return rates, invasion growth rates, and time to extinction. We then discuss the scope and limitations of each of these behavioural classes and corresponding metrics, with a particular focus on applications in empirical systems. Finally, we provide a potential workflow for matching empirical questions to theoretical tools, and present a brief prospectus looking forward to opportunities for advancing and integrating research on coexistence.</p>\",\"PeriodicalId\":133,\"journal\":{\"name\":\"Biological Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/brv.70079\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.70079","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
A practical guide to characterising ecological coexistence.
Coexistence is simultaneously one of the most fundamental concepts of ecology, and one of the most difficult to define. A particular challenge is that, despite a well-developed body of research, several different schools of thought have developed over the past century, leading to multiple independent, and largely isolated, branches of literature with distinct methodologies. Here, we provide a broad overview of the most common concepts and metrics currently used to detect and characterise ecological coexistence. We first introduce four classes of behaviour, which jointly describe the ways in which community dynamics can unfold: (i) the existence of a feasible steady state (or invariant set), i.e. where all coexisting species retain positive abundances in the long-term in the absence of interference by external forces; (ii) the existence of a local attractor that draws the community towards a feasible steady state from within a restricted set of starting conditions; (iii) the existence of a global attractor that draws the community towards feasible steady states from any non-zero starting condition; and (o) a null transient state, where species abundances vary over time irrespective of steady states and attractors. Next, we explain how these classes of behaviour relate to commonly used metrics for identifying and characterising coexistence, including analyses of parameter sensitivity, asymptotic return rates, invasion growth rates, and time to extinction. We then discuss the scope and limitations of each of these behavioural classes and corresponding metrics, with a particular focus on applications in empirical systems. Finally, we provide a potential workflow for matching empirical questions to theoretical tools, and present a brief prospectus looking forward to opportunities for advancing and integrating research on coexistence.
期刊介绍:
Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly.
The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions.
The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field.
Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.