描述生态共存的实用指南。

IF 11.7 1区 生物学 Q1 BIOLOGY
Adam T Clark, Lauren G Shoemaker, Jean-François Arnoldi, György Barabás, Rachel Germain, Oscar Godoy, Lauren Hallett, Canan Karakoç, Serguei Saavedra, Sebastian J Schreiber
{"title":"描述生态共存的实用指南。","authors":"Adam T Clark, Lauren G Shoemaker, Jean-François Arnoldi, György Barabás, Rachel Germain, Oscar Godoy, Lauren Hallett, Canan Karakoç, Serguei Saavedra, Sebastian J Schreiber","doi":"10.1111/brv.70079","DOIUrl":null,"url":null,"abstract":"<p><p>Coexistence is simultaneously one of the most fundamental concepts of ecology, and one of the most difficult to define. A particular challenge is that, despite a well-developed body of research, several different schools of thought have developed over the past century, leading to multiple independent, and largely isolated, branches of literature with distinct methodologies. Here, we provide a broad overview of the most common concepts and metrics currently used to detect and characterise ecological coexistence. We first introduce four classes of behaviour, which jointly describe the ways in which community dynamics can unfold: (i) the existence of a feasible steady state (or invariant set), i.e. where all coexisting species retain positive abundances in the long-term in the absence of interference by external forces; (ii) the existence of a local attractor that draws the community towards a feasible steady state from within a restricted set of starting conditions; (iii) the existence of a global attractor that draws the community towards feasible steady states from any non-zero starting condition; and (o) a null transient state, where species abundances vary over time irrespective of steady states and attractors. Next, we explain how these classes of behaviour relate to commonly used metrics for identifying and characterising coexistence, including analyses of parameter sensitivity, asymptotic return rates, invasion growth rates, and time to extinction. We then discuss the scope and limitations of each of these behavioural classes and corresponding metrics, with a particular focus on applications in empirical systems. Finally, we provide a potential workflow for matching empirical questions to theoretical tools, and present a brief prospectus looking forward to opportunities for advancing and integrating research on coexistence.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical guide to characterising ecological coexistence.\",\"authors\":\"Adam T Clark, Lauren G Shoemaker, Jean-François Arnoldi, György Barabás, Rachel Germain, Oscar Godoy, Lauren Hallett, Canan Karakoç, Serguei Saavedra, Sebastian J Schreiber\",\"doi\":\"10.1111/brv.70079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coexistence is simultaneously one of the most fundamental concepts of ecology, and one of the most difficult to define. A particular challenge is that, despite a well-developed body of research, several different schools of thought have developed over the past century, leading to multiple independent, and largely isolated, branches of literature with distinct methodologies. Here, we provide a broad overview of the most common concepts and metrics currently used to detect and characterise ecological coexistence. We first introduce four classes of behaviour, which jointly describe the ways in which community dynamics can unfold: (i) the existence of a feasible steady state (or invariant set), i.e. where all coexisting species retain positive abundances in the long-term in the absence of interference by external forces; (ii) the existence of a local attractor that draws the community towards a feasible steady state from within a restricted set of starting conditions; (iii) the existence of a global attractor that draws the community towards feasible steady states from any non-zero starting condition; and (o) a null transient state, where species abundances vary over time irrespective of steady states and attractors. Next, we explain how these classes of behaviour relate to commonly used metrics for identifying and characterising coexistence, including analyses of parameter sensitivity, asymptotic return rates, invasion growth rates, and time to extinction. We then discuss the scope and limitations of each of these behavioural classes and corresponding metrics, with a particular focus on applications in empirical systems. Finally, we provide a potential workflow for matching empirical questions to theoretical tools, and present a brief prospectus looking forward to opportunities for advancing and integrating research on coexistence.</p>\",\"PeriodicalId\":133,\"journal\":{\"name\":\"Biological Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/brv.70079\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.70079","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

共存是生态学最基本的概念之一,同时也是最难定义的概念之一。一个特别的挑战是,尽管有一个发达的研究体系,但在过去的一个世纪里,几个不同的思想流派已经发展起来,导致了多个独立的、在很大程度上是孤立的、具有不同方法的文学分支。在这里,我们提供了目前用于检测和表征生态共存的最常见概念和指标的广泛概述。我们首先介绍了四类行为,它们共同描述了群落动态可以展开的方式:(i)存在可行的稳态(或不变集),即所有共存物种在没有外力干扰的情况下长期保持正丰度;(ii)在一组有限的起始条件下,存在一个局部吸引子将群落吸引到一个可行的稳定状态;(iii)全局吸引子的存在性,该吸引子将群体从任何非零起始条件吸引到可行的稳态;零瞬态,即物种丰度随时间而变化,与稳态和吸引子无关。接下来,我们解释了这些行为类别如何与用于识别和表征共存的常用指标相关联,包括参数敏感性、渐近回复率、入侵增长率和灭绝时间的分析。然后,我们讨论了这些行为类别和相应指标的范围和局限性,特别关注在经验系统中的应用。最后,我们提供了一个将实证问题与理论工具相匹配的潜在工作流程,并提出了一份简短的招股说明书,期待推进和整合共存研究的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A practical guide to characterising ecological coexistence.

Coexistence is simultaneously one of the most fundamental concepts of ecology, and one of the most difficult to define. A particular challenge is that, despite a well-developed body of research, several different schools of thought have developed over the past century, leading to multiple independent, and largely isolated, branches of literature with distinct methodologies. Here, we provide a broad overview of the most common concepts and metrics currently used to detect and characterise ecological coexistence. We first introduce four classes of behaviour, which jointly describe the ways in which community dynamics can unfold: (i) the existence of a feasible steady state (or invariant set), i.e. where all coexisting species retain positive abundances in the long-term in the absence of interference by external forces; (ii) the existence of a local attractor that draws the community towards a feasible steady state from within a restricted set of starting conditions; (iii) the existence of a global attractor that draws the community towards feasible steady states from any non-zero starting condition; and (o) a null transient state, where species abundances vary over time irrespective of steady states and attractors. Next, we explain how these classes of behaviour relate to commonly used metrics for identifying and characterising coexistence, including analyses of parameter sensitivity, asymptotic return rates, invasion growth rates, and time to extinction. We then discuss the scope and limitations of each of these behavioural classes and corresponding metrics, with a particular focus on applications in empirical systems. Finally, we provide a potential workflow for matching empirical questions to theoretical tools, and present a brief prospectus looking forward to opportunities for advancing and integrating research on coexistence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Reviews
Biological Reviews 生物-生物学
CiteScore
21.30
自引率
2.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly. The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions. The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field. Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信