多途径治疗耐药皮肤感染的位点特异性抗菌策略。

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Lu Tang, Hening Liu, Jingwen Feng, Yi Yao, Yuqi Cao, Yue Yin, Cong Fu, Jifan Gao, Qiaqia Xiao, Ziwei Yan, Weijie Shu, Rou Wen, Mengliang Zhu, Xing-Jie Liang, Wei Wang
{"title":"多途径治疗耐药皮肤感染的位点特异性抗菌策略。","authors":"Lu Tang, Hening Liu, Jingwen Feng, Yi Yao, Yuqi Cao, Yue Yin, Cong Fu, Jifan Gao, Qiaqia Xiao, Ziwei Yan, Weijie Shu, Rou Wen, Mengliang Zhu, Xing-Jie Liang, Wei Wang","doi":"10.1002/adhm.202504240","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-resistant skin infections, especially those caused by multidrug-resistant (MDR) bacteria, remain a major public health concern due to the limited efficacy of conventional antibiotics and biofilm-associated tolerance. Herein, a site-specific antibacterial strategy based on a multi-pathway microneedle (MN) patch system is presented for effective treatment of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds and abscesses. The MN patch co-delivers vancomycin and photoactive black phosphorus quantum dots (BPQDs) encapsulated in macrophage membrane-coated cationic liposomes, thereby integrating antibiotic therapy with phototherapy. Upon light activation, BPQDs generate localized hyperthermia and reactive oxygen species, which synergize with vancomycin to eradicate bacteria and reduce the risk of resistance development. The dissolvable MN array ensures efficient penetration through the skin barrier, enabling targeted and sustained release at the infection site. In vivo, this multi-pathway intervention significantly accelerates wound closure, reduces abscess size, suppresses inflammation, and promotes tissue regeneration by remodeling the infectious microenvironment. Overall, this work demonstrates a promising localized therapeutic platform that harnesses multi-pathway antibacterial mechanisms to combat MDR bacteria and facilitate the healing of drug-resistant skin infections.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e04240"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Site-Specific Antibacterial Strategy for Multi-Pathway Treatment of Drug-Resistant Skin Infections.\",\"authors\":\"Lu Tang, Hening Liu, Jingwen Feng, Yi Yao, Yuqi Cao, Yue Yin, Cong Fu, Jifan Gao, Qiaqia Xiao, Ziwei Yan, Weijie Shu, Rou Wen, Mengliang Zhu, Xing-Jie Liang, Wei Wang\",\"doi\":\"10.1002/adhm.202504240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-resistant skin infections, especially those caused by multidrug-resistant (MDR) bacteria, remain a major public health concern due to the limited efficacy of conventional antibiotics and biofilm-associated tolerance. Herein, a site-specific antibacterial strategy based on a multi-pathway microneedle (MN) patch system is presented for effective treatment of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds and abscesses. The MN patch co-delivers vancomycin and photoactive black phosphorus quantum dots (BPQDs) encapsulated in macrophage membrane-coated cationic liposomes, thereby integrating antibiotic therapy with phototherapy. Upon light activation, BPQDs generate localized hyperthermia and reactive oxygen species, which synergize with vancomycin to eradicate bacteria and reduce the risk of resistance development. The dissolvable MN array ensures efficient penetration through the skin barrier, enabling targeted and sustained release at the infection site. In vivo, this multi-pathway intervention significantly accelerates wound closure, reduces abscess size, suppresses inflammation, and promotes tissue regeneration by remodeling the infectious microenvironment. Overall, this work demonstrates a promising localized therapeutic platform that harnesses multi-pathway antibacterial mechanisms to combat MDR bacteria and facilitate the healing of drug-resistant skin infections.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e04240\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202504240\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202504240","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

耐药皮肤感染,特别是由耐多药(MDR)细菌引起的感染,仍然是一个主要的公共卫生问题,因为传统抗生素的疗效有限和生物膜相关的耐受性。本文提出了一种基于多途径微针(MN)贴片系统的部位特异性抗菌策略,用于有效治疗耐甲氧西林金黄色葡萄球菌(MRSA)感染的伤口和脓肿。MN贴片将万古霉素和光活性黑磷量子点(BPQDs)包裹在巨噬细胞膜包裹的阳离子脂质体中,从而将抗生素治疗与光疗结合起来。光激活后,BPQDs产生局部热疗和活性氧,与万古霉素协同杀灭细菌,降低耐药风险。可溶解的MN阵列确保有效穿透皮肤屏障,在感染部位实现靶向和持续释放。在体内,这种多途径干预显著加速伤口愈合,减少脓肿大小,抑制炎症,并通过重塑感染微环境促进组织再生。总的来说,这项工作证明了一个有前途的局部治疗平台,利用多途径抗菌机制来对抗耐多药细菌,促进耐药皮肤感染的愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Site-Specific Antibacterial Strategy for Multi-Pathway Treatment of Drug-Resistant Skin Infections.

Drug-resistant skin infections, especially those caused by multidrug-resistant (MDR) bacteria, remain a major public health concern due to the limited efficacy of conventional antibiotics and biofilm-associated tolerance. Herein, a site-specific antibacterial strategy based on a multi-pathway microneedle (MN) patch system is presented for effective treatment of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds and abscesses. The MN patch co-delivers vancomycin and photoactive black phosphorus quantum dots (BPQDs) encapsulated in macrophage membrane-coated cationic liposomes, thereby integrating antibiotic therapy with phototherapy. Upon light activation, BPQDs generate localized hyperthermia and reactive oxygen species, which synergize with vancomycin to eradicate bacteria and reduce the risk of resistance development. The dissolvable MN array ensures efficient penetration through the skin barrier, enabling targeted and sustained release at the infection site. In vivo, this multi-pathway intervention significantly accelerates wound closure, reduces abscess size, suppresses inflammation, and promotes tissue regeneration by remodeling the infectious microenvironment. Overall, this work demonstrates a promising localized therapeutic platform that harnesses multi-pathway antibacterial mechanisms to combat MDR bacteria and facilitate the healing of drug-resistant skin infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信