对偶性及里斯环和正切代数的方程

IF 0.8 3区 数学 Q2 MATHEMATICS
Matthew Weaver
{"title":"对偶性及里斯环和正切代数的方程","authors":"Matthew Weaver","doi":"10.1002/mana.70044","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> be a module of projective dimension 1 over a Noetherian ring <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> and consider its Rees algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {R}(E)$</annotation>\n </semantics></math>. We study this ring as a quotient of the symmetric algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {S}(E)$</annotation>\n </semantics></math> and consider the ideal <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> defining this quotient. In the case that <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {S}(E)$</annotation>\n </semantics></math> is a complete intersection ring, we employ a duality between <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {S}(E)$</annotation>\n </semantics></math> in order to study the Rees ring <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {R}(E)$</annotation>\n </semantics></math> in multiple settings. In particular, when <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is a complete intersection ring defined by quadrics, we consider its module of Kähler differentials <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>R</mi>\n <mo>/</mo>\n <mi>k</mi>\n </mrow>\n </msub>\n <annotation>$\\Omega _{R/k}$</annotation>\n </semantics></math> and its associated tangent algebras.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3394-3416"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality and the equations of Rees rings and tangent algebras\",\"authors\":\"Matthew Weaver\",\"doi\":\"10.1002/mana.70044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math> be a module of projective dimension 1 over a Noetherian ring <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> and consider its Rees algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {R}(E)$</annotation>\\n </semantics></math>. We study this ring as a quotient of the symmetric algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {S}(E)$</annotation>\\n </semantics></math> and consider the ideal <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> defining this quotient. In the case that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {S}(E)$</annotation>\\n </semantics></math> is a complete intersection ring, we employ a duality between <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {S}(E)$</annotation>\\n </semantics></math> in order to study the Rees ring <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {R}(E)$</annotation>\\n </semantics></math> in multiple settings. In particular, when <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> is a complete intersection ring defined by quadrics, we consider its module of Kähler differentials <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Ω</mi>\\n <mrow>\\n <mi>R</mi>\\n <mo>/</mo>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\Omega _{R/k}$</annotation>\\n </semantics></math> and its associated tangent algebras.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 10\",\"pages\":\"3394-3416\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70044\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设E$ E$是noether环R$ R$上的一个射影维数为1的模,并考虑它的Rees代数R (E)$ \mathcal {R}(E)$。我们研究了这个环作为对称代数S (E)$ \mathcal {S}(E)$的商,并考虑了定义这个商的理想a $\mathcal {a}$。在S (E)$ \mathcal {S}(E)$是完全交环的情况下,我们采用a $\mathcal {a}$和S (E)$ \mathcal {S}(E)$之间的对偶关系,以便在多个设置中研究Rees环R (E)$ \mathcal {R}(E)$。特别地,当R$ R$是由二次曲线定义的完全交环时,我们考虑了它的Kähler微分模块Ω R/k $\ _{R/k}$及其相关的正切代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Duality and the equations of Rees rings and tangent algebras

Duality and the equations of Rees rings and tangent algebras

Let E $E$ be a module of projective dimension 1 over a Noetherian ring R $R$ and consider its Rees algebra R ( E ) $\mathcal {R}(E)$ . We study this ring as a quotient of the symmetric algebra S ( E ) $\mathcal {S}(E)$ and consider the ideal A $\mathcal {A}$ defining this quotient. In the case that S ( E ) $\mathcal {S}(E)$ is a complete intersection ring, we employ a duality between A $\mathcal {A}$ and S ( E ) $\mathcal {S}(E)$ in order to study the Rees ring R ( E ) $\mathcal {R}(E)$ in multiple settings. In particular, when R $R$ is a complete intersection ring defined by quadrics, we consider its module of Kähler differentials Ω R / k $\Omega _{R/k}$ and its associated tangent algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信