随机正则图的谱收敛性:切比雪夫多项式、非回溯行走和一元色扩展

IF 0.8 3区 数学 Q2 MATHEMATICS
Yulin Gong, Wenbo Li, Shiping Liu
{"title":"随机正则图的谱收敛性:切比雪夫多项式、非回溯行走和一元色扩展","authors":"Yulin Gong,&nbsp;Wenbo Li,&nbsp;Shiping Liu","doi":"10.1002/mana.70046","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we extend a criterion of Sodin on the convergence of graph spectral measures to regular graphs of growing degree. As a result, we show that for a sequence of random <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(q_n+1)$</annotation>\n </semantics></math>-regular graphs <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>n</mi>\n </msub>\n <annotation>$G_n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> vertices, if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$q_n = n^{o(1)}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n <annotation>$q_n$</annotation>\n </semantics></math> tends to infinity, the normalized spectral measure converges almost surely in <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-Wasserstein distance to the semicircle distribution for any <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p \\in [1, \\infty)$</annotation>\n </semantics></math>. This strengthens a result of Dumitriu and Pal. Many of the results are also extended to unitary-colored regular graphs. For example, we give a short proof of the weak convergence to the Kesten–McKay distribution for the normalized spectral measures of random <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-lifts. This result is derived by generalizing a formula of Friedman involving Chebyshev polynomials and non-backtracking walks.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3417-3439"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral convergence of random regular graphs: Chebyshev polynomials, non-backtracking walks, and unitary-color extensions\",\"authors\":\"Yulin Gong,&nbsp;Wenbo Li,&nbsp;Shiping Liu\",\"doi\":\"10.1002/mana.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we extend a criterion of Sodin on the convergence of graph spectral measures to regular graphs of growing degree. As a result, we show that for a sequence of random <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>q</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(q_n+1)$</annotation>\\n </semantics></math>-regular graphs <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$G_n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> vertices, if <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>q</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$q_n = n^{o(1)}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>q</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$q_n$</annotation>\\n </semantics></math> tends to infinity, the normalized spectral measure converges almost surely in <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-Wasserstein distance to the semicircle distribution for any <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mo>[</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$p \\\\in [1, \\\\infty)$</annotation>\\n </semantics></math>. This strengthens a result of Dumitriu and Pal. Many of the results are also extended to unitary-colored regular graphs. For example, we give a short proof of the weak convergence to the Kesten–McKay distribution for the normalized spectral measures of random <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>-lifts. This result is derived by generalizing a formula of Friedman involving Chebyshev polynomials and non-backtracking walks.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 10\",\"pages\":\"3417-3439\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70046\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70046","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将Sodin关于图谱测度收敛性的一个判据推广到有生长度的正则图。因此,我们证明了一个随机序列(q n + 1) $(q_n+1)$ -正则图G n $G_n$ with n $n$顶点,如果qn = n 0 (1) $q_n = n^{o(1)}$和qn$q_n$趋于无穷时,归一化谱测度几乎肯定收敛于p $p$ -Wasserstein距离到任意p∈[1,∞)$p \in [1, \infty)$的半圆分布。这加强了Dumitriu和Pal的结果。许多结果也推广到纯色正则图。例如,我们给出了随机N $N$ -升降机的归一化谱测度的Kesten-McKay分布的弱收敛性的一个简短证明。这个结果是通过推广一个包含切比雪夫多项式和非回溯行走的弗里德曼公式而得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spectral convergence of random regular graphs: Chebyshev polynomials, non-backtracking walks, and unitary-color extensions

Spectral convergence of random regular graphs: Chebyshev polynomials, non-backtracking walks, and unitary-color extensions

In this paper, we extend a criterion of Sodin on the convergence of graph spectral measures to regular graphs of growing degree. As a result, we show that for a sequence of random ( q n + 1 ) $(q_n+1)$ -regular graphs G n $G_n$ with n $n$ vertices, if q n = n o ( 1 ) $q_n = n^{o(1)}$ and q n $q_n$ tends to infinity, the normalized spectral measure converges almost surely in p $p$ -Wasserstein distance to the semicircle distribution for any p [ 1 , ) $p \in [1, \infty)$ . This strengthens a result of Dumitriu and Pal. Many of the results are also extended to unitary-colored regular graphs. For example, we give a short proof of the weak convergence to the Kesten–McKay distribution for the normalized spectral measures of random N $N$ -lifts. This result is derived by generalizing a formula of Friedman involving Chebyshev polynomials and non-backtracking walks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信