{"title":"随机正则图的谱收敛性:切比雪夫多项式、非回溯行走和一元色扩展","authors":"Yulin Gong, Wenbo Li, Shiping Liu","doi":"10.1002/mana.70046","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we extend a criterion of Sodin on the convergence of graph spectral measures to regular graphs of growing degree. As a result, we show that for a sequence of random <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(q_n+1)$</annotation>\n </semantics></math>-regular graphs <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>n</mi>\n </msub>\n <annotation>$G_n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> vertices, if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$q_n = n^{o(1)}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n <annotation>$q_n$</annotation>\n </semantics></math> tends to infinity, the normalized spectral measure converges almost surely in <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-Wasserstein distance to the semicircle distribution for any <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p \\in [1, \\infty)$</annotation>\n </semantics></math>. This strengthens a result of Dumitriu and Pal. Many of the results are also extended to unitary-colored regular graphs. For example, we give a short proof of the weak convergence to the Kesten–McKay distribution for the normalized spectral measures of random <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-lifts. This result is derived by generalizing a formula of Friedman involving Chebyshev polynomials and non-backtracking walks.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3417-3439"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral convergence of random regular graphs: Chebyshev polynomials, non-backtracking walks, and unitary-color extensions\",\"authors\":\"Yulin Gong, Wenbo Li, Shiping Liu\",\"doi\":\"10.1002/mana.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we extend a criterion of Sodin on the convergence of graph spectral measures to regular graphs of growing degree. As a result, we show that for a sequence of random <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>q</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(q_n+1)$</annotation>\\n </semantics></math>-regular graphs <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$G_n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> vertices, if <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>q</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$q_n = n^{o(1)}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>q</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$q_n$</annotation>\\n </semantics></math> tends to infinity, the normalized spectral measure converges almost surely in <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-Wasserstein distance to the semicircle distribution for any <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mo>[</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$p \\\\in [1, \\\\infty)$</annotation>\\n </semantics></math>. This strengthens a result of Dumitriu and Pal. Many of the results are also extended to unitary-colored regular graphs. For example, we give a short proof of the weak convergence to the Kesten–McKay distribution for the normalized spectral measures of random <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>-lifts. This result is derived by generalizing a formula of Friedman involving Chebyshev polynomials and non-backtracking walks.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 10\",\"pages\":\"3417-3439\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70046\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70046","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文将Sodin关于图谱测度收敛性的一个判据推广到有生长度的正则图。因此,我们证明了一个随机序列(q n + 1) $(q_n+1)$ -正则图G n $G_n$ with n $n$顶点,如果qn = n 0 (1) $q_n = n^{o(1)}$和qn$q_n$趋于无穷时,归一化谱测度几乎肯定收敛于p $p$ -Wasserstein距离到任意p∈[1,∞)$p \in [1, \infty)$的半圆分布。这加强了Dumitriu和Pal的结果。许多结果也推广到纯色正则图。例如,我们给出了随机N $N$ -升降机的归一化谱测度的Kesten-McKay分布的弱收敛性的一个简短证明。这个结果是通过推广一个包含切比雪夫多项式和非回溯行走的弗里德曼公式而得到的。
Spectral convergence of random regular graphs: Chebyshev polynomials, non-backtracking walks, and unitary-color extensions
In this paper, we extend a criterion of Sodin on the convergence of graph spectral measures to regular graphs of growing degree. As a result, we show that for a sequence of random -regular graphs with vertices, if and tends to infinity, the normalized spectral measure converges almost surely in -Wasserstein distance to the semicircle distribution for any . This strengthens a result of Dumitriu and Pal. Many of the results are also extended to unitary-colored regular graphs. For example, we give a short proof of the weak convergence to the Kesten–McKay distribution for the normalized spectral measures of random -lifts. This result is derived by generalizing a formula of Friedman involving Chebyshev polynomials and non-backtracking walks.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index