非阿基米德图和有向图的递归性和暂态性

IF 0.8 3区 数学 Q2 MATHEMATICS
Matthias Keller, Anna Muranova
{"title":"非阿基米德图和有向图的递归性和暂态性","authors":"Matthias Keller,&nbsp;Anna Muranova","doi":"10.1002/mana.70040","DOIUrl":null,"url":null,"abstract":"<p>We introduce notions of recurrence and transience for graphs over a non-Archimedean ordered field. To achieve this, we establish a connection between these graphs and random walks on directed graphs over the reals. In particular, we give a characterization of the real directed graphs which can arise in such a way. As a main result, we give characterization for recurrence and transience in terms of a quantity related to the capacity.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3307-3330"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrence and transience for non-Archimedean and directed graphs\",\"authors\":\"Matthias Keller,&nbsp;Anna Muranova\",\"doi\":\"10.1002/mana.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce notions of recurrence and transience for graphs over a non-Archimedean ordered field. To achieve this, we establish a connection between these graphs and random walks on directed graphs over the reals. In particular, we give a characterization of the real directed graphs which can arise in such a way. As a main result, we give characterization for recurrence and transience in terms of a quantity related to the capacity.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 10\",\"pages\":\"3307-3330\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70040\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70040","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

引入了非阿基米德有序域上图的递归和暂态概念。为了实现这一点,我们在这些图和实数上的有向图上的随机游走之间建立了联系。特别地,我们给出了可以用这种方式产生的实有向图的一个表征。作为主要结果,我们给出了递归性和暂态性在容量相关量方面的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recurrence and transience for non-Archimedean and directed graphs

Recurrence and transience for non-Archimedean and directed graphs

We introduce notions of recurrence and transience for graphs over a non-Archimedean ordered field. To achieve this, we establish a connection between these graphs and random walks on directed graphs over the reals. In particular, we give a characterization of the real directed graphs which can arise in such a way. As a main result, we give characterization for recurrence and transience in terms of a quantity related to the capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信