{"title":"关于火焰的一些算法和结构结果","authors":"Dávid Szeszlér","doi":"10.1002/jgt.23283","DOIUrl":null,"url":null,"abstract":"<p>A directed graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> with a root node <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> is called a <i>flame</i> if for every vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> other than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> the local edge-connectivity value <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>λ</mi>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> is equal to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>ϱ</mi>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, the in-degree of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>. It is a classic, simple and beautiful result of Lovász [4] that every digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> with a root node <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> has a spanning subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> that is a flame and the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> values are the same in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> as in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> for every vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> other than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>. However, the complexity of finding the minimum weight of such a subgraph is open [3]. In this paper we prove that this problem is solvable in strongly polynomial time for acyclic digraphs. Besides that, we prove a decomposition result of flames into edge-disjoint branchings via a chain of smaller flames and use this to prove a common generalization of Lovász's above mentioned theorem and Edmonds' classic disjoint arborescences theorem.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"392-397"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23283","citationCount":"0","resultStr":"{\"title\":\"On Some Algorithmic and Structural Results on Flames\",\"authors\":\"Dávid Szeszlér\",\"doi\":\"10.1002/jgt.23283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A directed graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with a root node <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is called a <i>flame</i> if for every vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> other than <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> the local edge-connectivity value <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>λ</mi>\\n \\n <mi>F</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is equal to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>ϱ</mi>\\n \\n <mi>F</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, the in-degree of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. It is a classic, simple and beautiful result of Lovász [4] that every digraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with a root node <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has a spanning subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> that is a flame and the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> values are the same in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> as in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> for every vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> other than <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. However, the complexity of finding the minimum weight of such a subgraph is open [3]. In this paper we prove that this problem is solvable in strongly polynomial time for acyclic digraphs. Besides that, we prove a decomposition result of flames into edge-disjoint branchings via a chain of smaller flames and use this to prove a common generalization of Lovász's above mentioned theorem and Edmonds' classic disjoint arborescences theorem.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"392-397\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23283\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23283","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
有根节点r的有向图F,如果对每个顶点v都有,则称为火焰图局部边连通性值λ F(r;V)从r到V等于ϱ F (v)v的in度。这是一部经典之作,Lovász[4]的简单而美丽的结果,每个有向图D与根节点r有一个生成子图F是火焰,λ (r)v)的值在F中与在除了r以外的每个顶点v都是D。然而,找到这样一个子图的最小权值的复杂度是开放的[3]。本文证明了该问题在强多项式时间内是可解的。除此之外,我们还证明了火焰通过一个较小的火焰链分解成边缘不相交分支的结果,并以此证明了Lovász的上述定理和Edmonds的经典不相交树杈定理的一个共同推广。
On Some Algorithmic and Structural Results on Flames
A directed graph with a root node is called a flame if for every vertex other than the local edge-connectivity value from to is equal to , the in-degree of . It is a classic, simple and beautiful result of Lovász [4] that every digraph with a root node has a spanning subgraph that is a flame and the values are the same in as in for every vertex other than . However, the complexity of finding the minimum weight of such a subgraph is open [3]. In this paper we prove that this problem is solvable in strongly polynomial time for acyclic digraphs. Besides that, we prove a decomposition result of flames into edge-disjoint branchings via a chain of smaller flames and use this to prove a common generalization of Lovász's above mentioned theorem and Edmonds' classic disjoint arborescences theorem.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .