{"title":"5G智能手机的自解耦超宽带MIMO阵列","authors":"Aidi Ren, Haoran Yu, Wenjun Xuan, Lixia Yang, Zhixiang Huang, Xiaolin Zhang","doi":"10.1155/mmce/4307648","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an ultrawideband self-decoupled building block with two antennas is constructed, which achieves high isolation between bandwidths without any decoupling structures. An ultrawideband operation is achieved by exciting two 0.25<i>λ</i> open slot modes and a loop mode. The wideband decoupling is usually a thorny problem, and our self-decoupling design within ultrawideband is verified by canceling the common and differential mode currents of every resonant mode. As a result, the proposed broadband building block not only operates in a wide bandwidth of 3.39–8.2 GHz (83%), including LTE band 42 (3.4–3.6 GHz), n79 (4.4–5 GHz), and both the n46 (5.15–5.925 GHz) and n96 (5.925–7.125 GHz), but also demonstrates high isolation (> 15.2 dB) over the entire bandwidth. An eight-element MIMO array consisting of four building blocks is designed, processed, and tested. The measured results demonstrate that the antenna system can provide good isolation in the 3.39–8.2 GHz operating band with good efficiencies (> 58%) and low ECCs (< 0.09). The proposed building block, with its benefits of ultrawideband, high isolation, self-decoupling, and simple structure, is very promising for 5G mobile communications.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2025 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/4307648","citationCount":"0","resultStr":"{\"title\":\"Ultrawideband MIMO Array With Self-Decoupled Building Blocks for 5G Smartphones\",\"authors\":\"Aidi Ren, Haoran Yu, Wenjun Xuan, Lixia Yang, Zhixiang Huang, Xiaolin Zhang\",\"doi\":\"10.1155/mmce/4307648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, an ultrawideband self-decoupled building block with two antennas is constructed, which achieves high isolation between bandwidths without any decoupling structures. An ultrawideband operation is achieved by exciting two 0.25<i>λ</i> open slot modes and a loop mode. The wideband decoupling is usually a thorny problem, and our self-decoupling design within ultrawideband is verified by canceling the common and differential mode currents of every resonant mode. As a result, the proposed broadband building block not only operates in a wide bandwidth of 3.39–8.2 GHz (83%), including LTE band 42 (3.4–3.6 GHz), n79 (4.4–5 GHz), and both the n46 (5.15–5.925 GHz) and n96 (5.925–7.125 GHz), but also demonstrates high isolation (> 15.2 dB) over the entire bandwidth. An eight-element MIMO array consisting of four building blocks is designed, processed, and tested. The measured results demonstrate that the antenna system can provide good isolation in the 3.39–8.2 GHz operating band with good efficiencies (> 58%) and low ECCs (< 0.09). The proposed building block, with its benefits of ultrawideband, high isolation, self-decoupling, and simple structure, is very promising for 5G mobile communications.</p>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/4307648\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/mmce/4307648\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/4307648","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Ultrawideband MIMO Array With Self-Decoupled Building Blocks for 5G Smartphones
In this paper, an ultrawideband self-decoupled building block with two antennas is constructed, which achieves high isolation between bandwidths without any decoupling structures. An ultrawideband operation is achieved by exciting two 0.25λ open slot modes and a loop mode. The wideband decoupling is usually a thorny problem, and our self-decoupling design within ultrawideband is verified by canceling the common and differential mode currents of every resonant mode. As a result, the proposed broadband building block not only operates in a wide bandwidth of 3.39–8.2 GHz (83%), including LTE band 42 (3.4–3.6 GHz), n79 (4.4–5 GHz), and both the n46 (5.15–5.925 GHz) and n96 (5.925–7.125 GHz), but also demonstrates high isolation (> 15.2 dB) over the entire bandwidth. An eight-element MIMO array consisting of four building blocks is designed, processed, and tested. The measured results demonstrate that the antenna system can provide good isolation in the 3.39–8.2 GHz operating band with good efficiencies (> 58%) and low ECCs (< 0.09). The proposed building block, with its benefits of ultrawideband, high isolation, self-decoupling, and simple structure, is very promising for 5G mobile communications.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.