3/2$ 3/2$旋量的三维Seiberg-Witten方程:一个紧致定理

IF 0.8 3区 数学 Q2 MATHEMATICS
Ahmad Reza Haj Saeedi Sadegh, Minh Lam Nguyen
{"title":"3/2$ 3/2$旋量的三维Seiberg-Witten方程:一个紧致定理","authors":"Ahmad Reza Haj Saeedi Sadegh,&nbsp;Minh Lam Nguyen","doi":"10.1002/mana.70042","DOIUrl":null,"url":null,"abstract":"<p>The Rarita-Schwinger–Seiberg-Witten (RS–SW) equations are defined similarly to the classical Seiberg–Witten equations, where a geometric non–Dirac-type operator replaces the Dirac operator called the Rarita–Schwinger operator. In dimension 4, the RS–SW equation was first considered by the second author (Nguyen [J. Geom. Anal. 33(2023), no. 10, 336]). The variational approach will also give us a three-dimensional version of the equations. The RS–SW equations share some features with the multiple-spinor Seiberg–Witten equations, where the moduli space of solutions could be noncompact. In this paper, we prove a compactness theorem regarding the moduli space of solutions of the RS–SW equations defined on 3-manifolds.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3331-3375"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70042","citationCount":"0","resultStr":"{\"title\":\"The three-dimensional Seiberg–Witten equations for \\n \\n \\n 3\\n /\\n 2\\n \\n $3/2$\\n -spinors: A compactness theorem\",\"authors\":\"Ahmad Reza Haj Saeedi Sadegh,&nbsp;Minh Lam Nguyen\",\"doi\":\"10.1002/mana.70042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Rarita-Schwinger–Seiberg-Witten (RS–SW) equations are defined similarly to the classical Seiberg–Witten equations, where a geometric non–Dirac-type operator replaces the Dirac operator called the Rarita–Schwinger operator. In dimension 4, the RS–SW equation was first considered by the second author (Nguyen [J. Geom. Anal. 33(2023), no. 10, 336]). The variational approach will also give us a three-dimensional version of the equations. The RS–SW equations share some features with the multiple-spinor Seiberg–Witten equations, where the moduli space of solutions could be noncompact. In this paper, we prove a compactness theorem regarding the moduli space of solutions of the RS–SW equations defined on 3-manifolds.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 10\",\"pages\":\"3331-3375\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70042\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70042\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70042","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Rarita-Schwinger - Seiberg-Witten (RS-SW)方程的定义与经典Seiberg-Witten方程相似,其中一个几何非狄拉克型算子取代了称为Rarita-Schwinger算子的狄拉克算子。在第4维,RS-SW方程首先由第二作者(Nguyen [J];几何学。肛门。33(2023),no。336])。变分方法也会给我们一个三维的方程。RS-SW方程具有多旋量Seiberg-Witten方程的一些特征,即解的模空间可以是非紧的。本文证明了3流形上定义的RS-SW方程解的模空间的紧性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The three-dimensional Seiberg–Witten equations for 
         
            
               3
               /
               2
            
            $3/2$
         -spinors: A compactness theorem

The three-dimensional Seiberg–Witten equations for 3 / 2 $3/2$ -spinors: A compactness theorem

The Rarita-Schwinger–Seiberg-Witten (RS–SW) equations are defined similarly to the classical Seiberg–Witten equations, where a geometric non–Dirac-type operator replaces the Dirac operator called the Rarita–Schwinger operator. In dimension 4, the RS–SW equation was first considered by the second author (Nguyen [J. Geom. Anal. 33(2023), no. 10, 336]). The variational approach will also give us a three-dimensional version of the equations. The RS–SW equations share some features with the multiple-spinor Seiberg–Witten equations, where the moduli space of solutions could be noncompact. In this paper, we prove a compactness theorem regarding the moduli space of solutions of the RS–SW equations defined on 3-manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信