基于熵理论的多孔介质孔径分布及渗透率、毛细吸水特性研究

IF 3.4 3区 工程技术 Q3 ENERGY & FUELS
Qi Wang, Ling Ning, Yun Wei, Pengfei Liu, Liang Fu
{"title":"基于熵理论的多孔介质孔径分布及渗透率、毛细吸水特性研究","authors":"Qi Wang,&nbsp;Ling Ning,&nbsp;Yun Wei,&nbsp;Pengfei Liu,&nbsp;Liang Fu","doi":"10.1002/ese3.70202","DOIUrl":null,"url":null,"abstract":"<p>The performance of porous media, such as capillary water migration and permeability, is significantly influenced by the complexity of the pore structure. The pore complexity can be characterized by the fractal dimension of the pore structure (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>f</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>) and the fractal dimension of pore tortuosity (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>T</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>). In this study, the entropy theory was employed to evaluate the complexity of the pore size distribution in porous media. By considering <i>T</i><sub>2</sub> and porosity, the entropy measures for the pore size distribution entropy (<i>H</i><sub><i>P</i></sub>), global entropy (<i>H</i><sub><i>G</i></sub>) and relative entropy (<i>H</i><sub><i>R</i></sub>) were calculated. Furthermore, the relationships between these three types of entropy and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>f</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, tortuosity, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>T</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, permeability, and capillary absorption coefficient (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϑ</mi>\n </mrow>\n </mrow>\n </semantics></math>) were investigated. Our findings demonstrate that <i>H</i><sub><i>P</i></sub> exhibits a quadratic increase with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>f</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. Pore tortuosity decreases as a power function of <i>H</i><sub><i>G</i></sub> while increasing as a power function of <i>H</i><sub><i>R</i></sub>. <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>T</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> decreases as an exponential function with <i>H</i><sub><i>G</i></sub> while increasing as an exponential function with <i>H</i><sub><i>R</i></sub>. Moreover, the permeability varied as a quadratic function with the <i>H</i><sub><i>P</i></sub>, and the<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϑ</mi>\n </mrow>\n </mrow>\n </semantics></math>increased as an exponential and logarithmic function with the porosity and <i>H</i><sub><i>G</i></sub>, respectively. This study highlights the feasibility and reliability of employing entropy theory to characterize microscopic pore structure features and hydraulic properties.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 10","pages":"4704-4716"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://scijournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70202","citationCount":"0","resultStr":"{\"title\":\"Investigating the Characterization of Pore Size Distribution and Permeability, Capillary Water Absorption in Porous Media Based on Entropy Theory\",\"authors\":\"Qi Wang,&nbsp;Ling Ning,&nbsp;Yun Wei,&nbsp;Pengfei Liu,&nbsp;Liang Fu\",\"doi\":\"10.1002/ese3.70202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The performance of porous media, such as capillary water migration and permeability, is significantly influenced by the complexity of the pore structure. The pore complexity can be characterized by the fractal dimension of the pore structure (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>f</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>) and the fractal dimension of pore tortuosity (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>T</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>). In this study, the entropy theory was employed to evaluate the complexity of the pore size distribution in porous media. By considering <i>T</i><sub>2</sub> and porosity, the entropy measures for the pore size distribution entropy (<i>H</i><sub><i>P</i></sub>), global entropy (<i>H</i><sub><i>G</i></sub>) and relative entropy (<i>H</i><sub><i>R</i></sub>) were calculated. Furthermore, the relationships between these three types of entropy and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>f</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, tortuosity, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>T</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, permeability, and capillary absorption coefficient (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϑ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>) were investigated. Our findings demonstrate that <i>H</i><sub><i>P</i></sub> exhibits a quadratic increase with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>f</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. Pore tortuosity decreases as a power function of <i>H</i><sub><i>G</i></sub> while increasing as a power function of <i>H</i><sub><i>R</i></sub>. <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>T</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> decreases as an exponential function with <i>H</i><sub><i>G</i></sub> while increasing as an exponential function with <i>H</i><sub><i>R</i></sub>. Moreover, the permeability varied as a quadratic function with the <i>H</i><sub><i>P</i></sub>, and the<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϑ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>increased as an exponential and logarithmic function with the porosity and <i>H</i><sub><i>G</i></sub>, respectively. This study highlights the feasibility and reliability of employing entropy theory to characterize microscopic pore structure features and hydraulic properties.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 10\",\"pages\":\"4704-4716\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://scijournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70202\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://scijournals.onlinelibrary.wiley.com/doi/10.1002/ese3.70202\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://scijournals.onlinelibrary.wiley.com/doi/10.1002/ese3.70202","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

孔隙结构的复杂性对多孔介质的毛细管水运移和渗透率等性能有显著影响。孔隙复杂性可以用孔隙结构的分形维数(df)和孔隙扭曲度的分形维数(D)。本研究采用熵理论来评价多孔介质中孔径分布的复杂性。考虑T2和孔隙度,计算孔径分布熵(HP)、全局熵(HG)和相对熵(HR)的熵测度。此外,这三种熵与df、扭曲度、研究了dt、渗透率和毛细吸收系数。我们的研究结果表明,HP与df呈二次增长。孔隙弯曲度随HG的幂函数减小,随HR的幂函数增大。dt随HG呈指数函数减小,随HR呈指数函数增大。渗透率随HP呈二次函数变化,渗透率随孔隙度和HG呈指数函数和对数函数增加。本研究突出了熵理论表征微观孔隙结构特征和水力特性的可行性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the Characterization of Pore Size Distribution and Permeability, Capillary Water Absorption in Porous Media Based on Entropy Theory

Investigating the Characterization of Pore Size Distribution and Permeability, Capillary Water Absorption in Porous Media Based on Entropy Theory

The performance of porous media, such as capillary water migration and permeability, is significantly influenced by the complexity of the pore structure. The pore complexity can be characterized by the fractal dimension of the pore structure ( D f ) and the fractal dimension of pore tortuosity ( D T ). In this study, the entropy theory was employed to evaluate the complexity of the pore size distribution in porous media. By considering T2 and porosity, the entropy measures for the pore size distribution entropy (HP), global entropy (HG) and relative entropy (HR) were calculated. Furthermore, the relationships between these three types of entropy and D f , tortuosity, D T , permeability, and capillary absorption coefficient ( ϑ ) were investigated. Our findings demonstrate that HP exhibits a quadratic increase with D f . Pore tortuosity decreases as a power function of HG while increasing as a power function of HR. D T decreases as an exponential function with HG while increasing as an exponential function with HR. Moreover, the permeability varied as a quadratic function with the HP, and the ϑ increased as an exponential and logarithmic function with the porosity and HG, respectively. This study highlights the feasibility and reliability of employing entropy theory to characterize microscopic pore structure features and hydraulic properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信