电子空间辐射自然极限的证据:本福德定律的应用

IF 2.9 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
L. Olifer, I. R. Mann
{"title":"电子空间辐射自然极限的证据:本福德定律的应用","authors":"L. Olifer,&nbsp;I. R. Mann","doi":"10.1029/2025JA034445","DOIUrl":null,"url":null,"abstract":"<p>Recent research has highlighted observational evidence for a natural limit to the severity of energetic electron differential fluxes in the Van Allen radiation belts. Here, we analyze the occurrence distributions of electron differential fluxes from the entire Van Allen Probes mission (2012–2019) to further investigate the energy dependence of electron flux distributions under the action of the flux-capping mechanism proposed by Kennel and Petschek (1966, https://doi.org/10.1029/jz071i001p00001). Specifically, we further examine the characteristics of the ensemble of flux values for at least weak geomagnetic activity (Dst<span></span><math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <mo>−</mo>\n </mrow>\n <annotation> ${&lt; } -$</annotation>\n </semantics></math>30 nT) in the context of Benford's Law. Benford's Law proposes a logarithmic distribution of the first significant digit of ensembles of numerical values of various parameters, and has been found to be obeyed across a wide range of scientific, socioeconomic, and even financial data sets. We show that Benford's Law can be used to distinguish between the energies of electron flux distributions that are either strongly affected or largely unaffected by flux-capping Kennel-Petschek-like processes. In this paper, we present a representative numerical model of ensemble distributions formed through a large number of sequential multiplicative operations (such as those expected from repeated wave-particle interactions in the Van Allen belts). The model demonstrates that in the absence of capping processes, these distributions naturally evolve into log-normal forms. Furthermore, their first-digit occurrence distributions closely follow Benford's Law.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034445","citationCount":"0","resultStr":"{\"title\":\"Evidence for a Natural Limit to Electron Space Radiation: An Application of Benford's Law\",\"authors\":\"L. Olifer,&nbsp;I. R. Mann\",\"doi\":\"10.1029/2025JA034445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent research has highlighted observational evidence for a natural limit to the severity of energetic electron differential fluxes in the Van Allen radiation belts. Here, we analyze the occurrence distributions of electron differential fluxes from the entire Van Allen Probes mission (2012–2019) to further investigate the energy dependence of electron flux distributions under the action of the flux-capping mechanism proposed by Kennel and Petschek (1966, https://doi.org/10.1029/jz071i001p00001). Specifically, we further examine the characteristics of the ensemble of flux values for at least weak geomagnetic activity (Dst<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>&lt;</mo>\\n <mo>−</mo>\\n </mrow>\\n <annotation> ${&lt; } -$</annotation>\\n </semantics></math>30 nT) in the context of Benford's Law. Benford's Law proposes a logarithmic distribution of the first significant digit of ensembles of numerical values of various parameters, and has been found to be obeyed across a wide range of scientific, socioeconomic, and even financial data sets. We show that Benford's Law can be used to distinguish between the energies of electron flux distributions that are either strongly affected or largely unaffected by flux-capping Kennel-Petschek-like processes. In this paper, we present a representative numerical model of ensemble distributions formed through a large number of sequential multiplicative operations (such as those expected from repeated wave-particle interactions in the Van Allen belts). The model demonstrates that in the absence of capping processes, these distributions naturally evolve into log-normal forms. Furthermore, their first-digit occurrence distributions closely follow Benford's Law.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034445\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034445\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034445","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究突出了范艾伦辐射带中高能电子差通量严重程度的自然限制的观测证据。在此,我们分析了整个范艾伦探测器任务(2012-2019)中电子差通量的发生分布,以进一步研究Kennel和Petschek (1966, https://doi.org/10.1029/jz071i001p00001)提出的通量封顶机制作用下电子通量分布的能量依赖性。具体来说,我们在本福德定律的背景下进一步研究了至少弱地磁活动(Dst <−${<} -$ 30 nT)的通量值集合的特征。本福德定律提出了各种参数的数值集合的第一个有效数字的对数分布,并且已经被发现在广泛的科学,社会经济甚至金融数据集中都被遵守。我们表明,本福德定律可以用来区分电子通量分布的能量,这些电子通量分布要么受到通量覆盖的kennel - petschek过程的强烈影响,要么基本上不受影响。在本文中,我们提出了一个具有代表性的通过大量顺序乘法运算(如范艾伦带中重复波粒相互作用所期望的)形成的系综分布的数值模型。该模型表明,在没有封顶过程的情况下,这些分布自然演变为对数正态形式。此外,它们的第一位数出现分布密切遵循本福德定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evidence for a Natural Limit to Electron Space Radiation: An Application of Benford's Law

Evidence for a Natural Limit to Electron Space Radiation: An Application of Benford's Law

Recent research has highlighted observational evidence for a natural limit to the severity of energetic electron differential fluxes in the Van Allen radiation belts. Here, we analyze the occurrence distributions of electron differential fluxes from the entire Van Allen Probes mission (2012–2019) to further investigate the energy dependence of electron flux distributions under the action of the flux-capping mechanism proposed by Kennel and Petschek (1966, https://doi.org/10.1029/jz071i001p00001). Specifically, we further examine the characteristics of the ensemble of flux values for at least weak geomagnetic activity (Dst < ${< } -$ 30 nT) in the context of Benford's Law. Benford's Law proposes a logarithmic distribution of the first significant digit of ensembles of numerical values of various parameters, and has been found to be obeyed across a wide range of scientific, socioeconomic, and even financial data sets. We show that Benford's Law can be used to distinguish between the energies of electron flux distributions that are either strongly affected or largely unaffected by flux-capping Kennel-Petschek-like processes. In this paper, we present a representative numerical model of ensemble distributions formed through a large number of sequential multiplicative operations (such as those expected from repeated wave-particle interactions in the Van Allen belts). The model demonstrates that in the absence of capping processes, these distributions naturally evolve into log-normal forms. Furthermore, their first-digit occurrence distributions closely follow Benford's Law.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信