新一代锂离子电池用硅藻土SiO2阳极的电化学活化研究

IF 14.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weicheng Hua, Per Erik Vullum, Kristianne Nilsen-Nygaard Hjelseng, Johan Hamonnet, Pedro Alonso-Sánchez, Jiefang Zhu, Zoltan Hegedüs, Juan Rubio Zuazo, Federico Cova, Ann Mari Svensson, Maria Valeria Blanco
{"title":"新一代锂离子电池用硅藻土SiO2阳极的电化学活化研究","authors":"Weicheng Hua,&nbsp;Per Erik Vullum,&nbsp;Kristianne Nilsen-Nygaard Hjelseng,&nbsp;Johan Hamonnet,&nbsp;Pedro Alonso-Sánchez,&nbsp;Jiefang Zhu,&nbsp;Zoltan Hegedüs,&nbsp;Juan Rubio Zuazo,&nbsp;Federico Cova,&nbsp;Ann Mari Svensson,&nbsp;Maria Valeria Blanco","doi":"10.1002/eem2.70074","DOIUrl":null,"url":null,"abstract":"<p>Silica (SiO<sub>2</sub>) anodes are promising candidates for enhancing the energy density of next-generation Li-ion batteries, offering a compelling combination of high storage capacity, stable cycling performance, low cost, and sustainability. This performance stems from SiO<sub>2</sub> unique lithiation mechanism, which involves its conversion to electroactive silicon (Si) and electrochemically inactive species. However, widespread adoption of SiO<sub>2</sub> anodes is hindered by their slow initial lithiation. To address this, research has focused on developing electrochemical “activation protocols” that involve prolonged low-potential holding steps to promote SiO<sub>2</sub> conversion. Despite these efforts, the complex and multi-pathway nature of SiO<sub>2</sub> lithiation process remains poorly understood, impeding the rational design of effective activation strategies. By introducing a multi-probe characterization approach, this study reveals that, contrary to the previously proposed reaction mechanism of SiO<sub>2</sub> anodes, the lithiation process initiates at low potentials with the direct formation of Li<sub>4</sub>SiO<sub>4</sub> and Li<sub>x</sub>Si. Electrochemical activation potential was found to significantly influence the degree of conversion, with 10 mV identified as the optimal cut-off potential for maximizing SiO<sub>2</sub> utilization. These findings provide key enablers to unlock the full potential of SiO<sub>2</sub> anodes for battery technology.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70074","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Electrochemical Activation of Diatomaceous Earth SiO2 Anodes for Next-Generation Li-Ion Batteries\",\"authors\":\"Weicheng Hua,&nbsp;Per Erik Vullum,&nbsp;Kristianne Nilsen-Nygaard Hjelseng,&nbsp;Johan Hamonnet,&nbsp;Pedro Alonso-Sánchez,&nbsp;Jiefang Zhu,&nbsp;Zoltan Hegedüs,&nbsp;Juan Rubio Zuazo,&nbsp;Federico Cova,&nbsp;Ann Mari Svensson,&nbsp;Maria Valeria Blanco\",\"doi\":\"10.1002/eem2.70074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silica (SiO<sub>2</sub>) anodes are promising candidates for enhancing the energy density of next-generation Li-ion batteries, offering a compelling combination of high storage capacity, stable cycling performance, low cost, and sustainability. This performance stems from SiO<sub>2</sub> unique lithiation mechanism, which involves its conversion to electroactive silicon (Si) and electrochemically inactive species. However, widespread adoption of SiO<sub>2</sub> anodes is hindered by their slow initial lithiation. To address this, research has focused on developing electrochemical “activation protocols” that involve prolonged low-potential holding steps to promote SiO<sub>2</sub> conversion. Despite these efforts, the complex and multi-pathway nature of SiO<sub>2</sub> lithiation process remains poorly understood, impeding the rational design of effective activation strategies. By introducing a multi-probe characterization approach, this study reveals that, contrary to the previously proposed reaction mechanism of SiO<sub>2</sub> anodes, the lithiation process initiates at low potentials with the direct formation of Li<sub>4</sub>SiO<sub>4</sub> and Li<sub>x</sub>Si. Electrochemical activation potential was found to significantly influence the degree of conversion, with 10 mV identified as the optimal cut-off potential for maximizing SiO<sub>2</sub> utilization. These findings provide key enablers to unlock the full potential of SiO<sub>2</sub> anodes for battery technology.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70074\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70074","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化硅(SiO2)阳极是提高下一代锂离子电池能量密度的有希望的候选者,具有高存储容量、稳定循环性能、低成本和可持续性的令人信服的组合。这种性能源于SiO2独特的锂化机制,包括其转化为电活性硅(Si)和电化学非活性物质。然而,SiO2阳极的广泛采用受到其初始锂化缓慢的阻碍。为了解决这个问题,研究重点是开发电化学“活化方案”,包括延长低电位保持步骤以促进SiO2转化。尽管如此,人们对SiO2岩化过程的复杂性和多途径性仍然知之甚少,这阻碍了有效活化策略的合理设计。通过引入多探针表征方法,本研究表明,与之前提出的SiO2阳极反应机制相反,锂化过程从低电位开始,直接形成Li4SiO4和LixSi。电化学活化电位对转化程度有显著影响,10 mV是最大限度提高SiO2利用率的最佳截止电位。这些发现为释放SiO2阳极在电池技术中的全部潜力提供了关键的推动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking the Electrochemical Activation of Diatomaceous Earth SiO2 Anodes for Next-Generation Li-Ion Batteries

Unlocking the Electrochemical Activation of Diatomaceous Earth SiO2 Anodes for Next-Generation Li-Ion Batteries

Silica (SiO2) anodes are promising candidates for enhancing the energy density of next-generation Li-ion batteries, offering a compelling combination of high storage capacity, stable cycling performance, low cost, and sustainability. This performance stems from SiO2 unique lithiation mechanism, which involves its conversion to electroactive silicon (Si) and electrochemically inactive species. However, widespread adoption of SiO2 anodes is hindered by their slow initial lithiation. To address this, research has focused on developing electrochemical “activation protocols” that involve prolonged low-potential holding steps to promote SiO2 conversion. Despite these efforts, the complex and multi-pathway nature of SiO2 lithiation process remains poorly understood, impeding the rational design of effective activation strategies. By introducing a multi-probe characterization approach, this study reveals that, contrary to the previously proposed reaction mechanism of SiO2 anodes, the lithiation process initiates at low potentials with the direct formation of Li4SiO4 and LixSi. Electrochemical activation potential was found to significantly influence the degree of conversion, with 10 mV identified as the optimal cut-off potential for maximizing SiO2 utilization. These findings provide key enablers to unlock the full potential of SiO2 anodes for battery technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信