Julia A. Boyle, Bridget Murphy, Fangming Teng, Parsa Babaei Zadeh, Ingo Ensminger, John R. Stinchcombe, Megan E. Frederickson
{"title":"共生机制介导豆科植物对微生物气候遗产的响应","authors":"Julia A. Boyle, Bridget Murphy, Fangming Teng, Parsa Babaei Zadeh, Ingo Ensminger, John R. Stinchcombe, Megan E. Frederickson","doi":"10.1002/ece3.72271","DOIUrl":null,"url":null,"abstract":"<p>Climate change is altering both soil microbial communities and the ecological context of plant–microbe interactions. Heat, drought, and their legacies can alter soil microbiomes and potential plant symbionts, but the direct consequences of these microbial changes on plant performance and plant investment in symbiosis remain underexplored. Predicting how soil microbes modulate plant resilience to heat and drought is critical to mitigating the negative effects of climate change on ecosystems and agriculture. In this proof of concept study, we conducted growth chamber experiments to isolate the microbially mediated indirect effects of heat and drought on plant performance and symbiosis. In the first experiment, focused on drought, we found that drought and drought-treated microbes, along with their interaction, significantly decreased the biomass of <i>Medicago lupulina</i> plants compared to well-watered microbiomes and conditions. In a second experiment, we then tested how the addition of a well-known microbial mutualist, <i>Sinorhizobium meliloti</i>, affected heat- and drought-treated microbiomes' impact on <i>M. lupulina</i>. We found that drought-adapted microbiomes negatively impacted legume performance by increasing mortality and reducing branch number, but that adding rhizobia erased differences in plant responses to climate-treated soils. In contrast, heat-adapted microbiomes did not differ significantly from control microbiomes in their effects on a legume. Our results suggest microbial legacy effects, mutualist partners, and their interactions are important in mediating plant responses to drought, with some mutualists equalizing plant responses across microbial legacies.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.72271","citationCount":"0","resultStr":"{\"title\":\"Mutualism Mediates Legume Response to Microbial Climate Legacies\",\"authors\":\"Julia A. Boyle, Bridget Murphy, Fangming Teng, Parsa Babaei Zadeh, Ingo Ensminger, John R. Stinchcombe, Megan E. Frederickson\",\"doi\":\"10.1002/ece3.72271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change is altering both soil microbial communities and the ecological context of plant–microbe interactions. Heat, drought, and their legacies can alter soil microbiomes and potential plant symbionts, but the direct consequences of these microbial changes on plant performance and plant investment in symbiosis remain underexplored. Predicting how soil microbes modulate plant resilience to heat and drought is critical to mitigating the negative effects of climate change on ecosystems and agriculture. In this proof of concept study, we conducted growth chamber experiments to isolate the microbially mediated indirect effects of heat and drought on plant performance and symbiosis. In the first experiment, focused on drought, we found that drought and drought-treated microbes, along with their interaction, significantly decreased the biomass of <i>Medicago lupulina</i> plants compared to well-watered microbiomes and conditions. In a second experiment, we then tested how the addition of a well-known microbial mutualist, <i>Sinorhizobium meliloti</i>, affected heat- and drought-treated microbiomes' impact on <i>M. lupulina</i>. We found that drought-adapted microbiomes negatively impacted legume performance by increasing mortality and reducing branch number, but that adding rhizobia erased differences in plant responses to climate-treated soils. In contrast, heat-adapted microbiomes did not differ significantly from control microbiomes in their effects on a legume. Our results suggest microbial legacy effects, mutualist partners, and their interactions are important in mediating plant responses to drought, with some mutualists equalizing plant responses across microbial legacies.</p>\",\"PeriodicalId\":11467,\"journal\":{\"name\":\"Ecology and Evolution\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.72271\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece3.72271\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.72271","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Mutualism Mediates Legume Response to Microbial Climate Legacies
Climate change is altering both soil microbial communities and the ecological context of plant–microbe interactions. Heat, drought, and their legacies can alter soil microbiomes and potential plant symbionts, but the direct consequences of these microbial changes on plant performance and plant investment in symbiosis remain underexplored. Predicting how soil microbes modulate plant resilience to heat and drought is critical to mitigating the negative effects of climate change on ecosystems and agriculture. In this proof of concept study, we conducted growth chamber experiments to isolate the microbially mediated indirect effects of heat and drought on plant performance and symbiosis. In the first experiment, focused on drought, we found that drought and drought-treated microbes, along with their interaction, significantly decreased the biomass of Medicago lupulina plants compared to well-watered microbiomes and conditions. In a second experiment, we then tested how the addition of a well-known microbial mutualist, Sinorhizobium meliloti, affected heat- and drought-treated microbiomes' impact on M. lupulina. We found that drought-adapted microbiomes negatively impacted legume performance by increasing mortality and reducing branch number, but that adding rhizobia erased differences in plant responses to climate-treated soils. In contrast, heat-adapted microbiomes did not differ significantly from control microbiomes in their effects on a legume. Our results suggest microbial legacy effects, mutualist partners, and their interactions are important in mediating plant responses to drought, with some mutualists equalizing plant responses across microbial legacies.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.