深海叶绿素最大值对南大洋净初级产量的贡献

IF 5.5 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Clara R. Vives, Christina Schallenberg, Peter G. Strutton, Jørgen Bendtsen, Katherine Richardson, Philip W. Boyd
{"title":"深海叶绿素最大值对南大洋净初级产量的贡献","authors":"Clara R. Vives,&nbsp;Christina Schallenberg,&nbsp;Peter G. Strutton,&nbsp;Jørgen Bendtsen,&nbsp;Katherine Richardson,&nbsp;Philip W. Boyd","doi":"10.1029/2024GB008327","DOIUrl":null,"url":null,"abstract":"<p>Deep chlorophyll maxima (DCMs) have long been studied in the northern hemisphere but have received less attention in the Southern Ocean. Their contribution to phytoplankton biomass and net primary productivity (NPP) is poorly resolved. Recently, the application of satellite NPP algorithms to biogeochemical (BGC)-Argo float data has improved vertically resolved NPP estimates. Using this approach on 12,700 BGC-Argo profiles south of 30°S, we report (1) subsurface (below the mixed layer) estimates of NPP, (2) the contribution of subsurface NPP to total NPP, and (3) the influence of DCMs and deep biomass maxima (DBMs) on (1) and (2). When DCMs are present (<i>n</i> = 2,119 profiles), subsurface NPP is 217 ± 106 mg C m<sup>−2</sup> day<sup>−1</sup> compared to 82 ± 92 mg C m<sup>−2</sup> day<sup>−1</sup> for all profiles. We further compare observations across seasons in four water masses from nitrate-limited oligotrophic waters north of the subtropical front to iron-limited regions further south, including the sea ice zone. Low-latitude DCMs (i.e., 30–44°S), show the highest contribution to column-integrated NPP. However, DCMs occur across all frontal zones and contribute significantly to total NPP when present. Rather than missing subsurface NPP associated with DCMs, the satellite Carbon-based Productivity Model (CbPM) tends to mistakenly assume DCMs below the mixed layer, overestimating NPP. This situation is somewhat ameliorated in the ferricline version of the CbPM due to better nutricline-euphotic depth alignment. Our results highlight the importance of understanding the vertical structure of phytoplankton stocks and productivity, with direct impacts on global NPP estimates and, ultimately, climate model projections.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008327","citationCount":"0","resultStr":"{\"title\":\"The Contribution of Deep Chlorophyll Maxima to Net Primary Production in the Southern Ocean\",\"authors\":\"Clara R. Vives,&nbsp;Christina Schallenberg,&nbsp;Peter G. Strutton,&nbsp;Jørgen Bendtsen,&nbsp;Katherine Richardson,&nbsp;Philip W. Boyd\",\"doi\":\"10.1029/2024GB008327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep chlorophyll maxima (DCMs) have long been studied in the northern hemisphere but have received less attention in the Southern Ocean. Their contribution to phytoplankton biomass and net primary productivity (NPP) is poorly resolved. Recently, the application of satellite NPP algorithms to biogeochemical (BGC)-Argo float data has improved vertically resolved NPP estimates. Using this approach on 12,700 BGC-Argo profiles south of 30°S, we report (1) subsurface (below the mixed layer) estimates of NPP, (2) the contribution of subsurface NPP to total NPP, and (3) the influence of DCMs and deep biomass maxima (DBMs) on (1) and (2). When DCMs are present (<i>n</i> = 2,119 profiles), subsurface NPP is 217 ± 106 mg C m<sup>−2</sup> day<sup>−1</sup> compared to 82 ± 92 mg C m<sup>−2</sup> day<sup>−1</sup> for all profiles. We further compare observations across seasons in four water masses from nitrate-limited oligotrophic waters north of the subtropical front to iron-limited regions further south, including the sea ice zone. Low-latitude DCMs (i.e., 30–44°S), show the highest contribution to column-integrated NPP. However, DCMs occur across all frontal zones and contribute significantly to total NPP when present. Rather than missing subsurface NPP associated with DCMs, the satellite Carbon-based Productivity Model (CbPM) tends to mistakenly assume DCMs below the mixed layer, overestimating NPP. This situation is somewhat ameliorated in the ferricline version of the CbPM due to better nutricline-euphotic depth alignment. Our results highlight the importance of understanding the vertical structure of phytoplankton stocks and productivity, with direct impacts on global NPP estimates and, ultimately, climate model projections.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"39 10\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008327\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008327\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008327","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

深叶绿素极大值(dcm)在北半球已经研究了很长时间,但在南大洋却很少受到关注。它们对浮游植物生物量和净初级生产力(NPP)的贡献尚不清楚。近年来,将卫星NPP算法应用于生物地球化学(BGC)-Argo浮子数据,提高了垂直分辨率NPP估算。在30°S以南12700条BGC-Argo剖面上,我们报告了(1)地下(混合层以下)NPP的估计,(2)地下NPP对总NPP的贡献,以及(3)dcm和深层生物量最大值(DBMs)对(1)和(2)的影响。当dcm存在时(n = 2119个剖面),地下NPP为217±106 mg cm−2 day - 1,而所有剖面的NPP为82±92 mg cm−2 day - 1。我们进一步比较了四个水团的季节观测结果,从亚热带锋面以北的硝酸盐有限的少营养水域到更南的铁有限的地区,包括海冰带。低纬度dcm(即30-44°S)对柱积分NPP的贡献最大。然而,dcm发生在所有额叶区,当出现时对总NPP有显著贡献。卫星碳基生产力模型(CbPM)并没有忽略与dcm相关的地下NPP,而是倾向于错误地假设混合层以下的dcm,从而高估了NPP。这种情况在铁线版本的CbPM中有所改善,因为更好的营养线-光深度对准。我们的研究结果强调了了解浮游植物种群和生产力的垂直结构的重要性,这对全球NPP估算以及最终的气候模式预测具有直接影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Contribution of Deep Chlorophyll Maxima to Net Primary Production in the Southern Ocean

The Contribution of Deep Chlorophyll Maxima to Net Primary Production in the Southern Ocean

Deep chlorophyll maxima (DCMs) have long been studied in the northern hemisphere but have received less attention in the Southern Ocean. Their contribution to phytoplankton biomass and net primary productivity (NPP) is poorly resolved. Recently, the application of satellite NPP algorithms to biogeochemical (BGC)-Argo float data has improved vertically resolved NPP estimates. Using this approach on 12,700 BGC-Argo profiles south of 30°S, we report (1) subsurface (below the mixed layer) estimates of NPP, (2) the contribution of subsurface NPP to total NPP, and (3) the influence of DCMs and deep biomass maxima (DBMs) on (1) and (2). When DCMs are present (n = 2,119 profiles), subsurface NPP is 217 ± 106 mg C m−2 day−1 compared to 82 ± 92 mg C m−2 day−1 for all profiles. We further compare observations across seasons in four water masses from nitrate-limited oligotrophic waters north of the subtropical front to iron-limited regions further south, including the sea ice zone. Low-latitude DCMs (i.e., 30–44°S), show the highest contribution to column-integrated NPP. However, DCMs occur across all frontal zones and contribute significantly to total NPP when present. Rather than missing subsurface NPP associated with DCMs, the satellite Carbon-based Productivity Model (CbPM) tends to mistakenly assume DCMs below the mixed layer, overestimating NPP. This situation is somewhat ameliorated in the ferricline version of the CbPM due to better nutricline-euphotic depth alignment. Our results highlight the importance of understanding the vertical structure of phytoplankton stocks and productivity, with direct impacts on global NPP estimates and, ultimately, climate model projections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信