Hyun-il Kim, Se-Dong Jang, Hehun Choi, Tae-Hyung Kim, Byunghyun Kim
{"title":"基于LSTM和流域水文数据的洪水水位预测","authors":"Hyun-il Kim, Se-Dong Jang, Hehun Choi, Tae-Hyung Kim, Byunghyun Kim","doi":"10.1111/jfr3.70123","DOIUrl":null,"url":null,"abstract":"<p>Accurate flood level prediction is crucial for mitigating flood damage caused by typhoons or localized heavy rainfall. However, predicting flood levels is challenging due to changes in river environments and external factors, such as dam or weir operations. To address these challenges, this study proposes a methodology for constructing an optimal combination of input data using basic hydrological information and predicting flood levels in real time through a deep learning model. The study focuses on identifying the best input data combination tailored to each river basin's characteristics, considering both natural runoff rivers and those influenced by dam discharges. The Long Short-Term Memory (LSTM) model, known for its superior performance in time-series forecasting, was employed. The results demonstrate high accuracy in flood level prediction, particularly within a 3-h lead time.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70123","citationCount":"0","resultStr":"{\"title\":\"Prediction of Flood Level Using LSTM and Watershed Hydrological Data\",\"authors\":\"Hyun-il Kim, Se-Dong Jang, Hehun Choi, Tae-Hyung Kim, Byunghyun Kim\",\"doi\":\"10.1111/jfr3.70123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate flood level prediction is crucial for mitigating flood damage caused by typhoons or localized heavy rainfall. However, predicting flood levels is challenging due to changes in river environments and external factors, such as dam or weir operations. To address these challenges, this study proposes a methodology for constructing an optimal combination of input data using basic hydrological information and predicting flood levels in real time through a deep learning model. The study focuses on identifying the best input data combination tailored to each river basin's characteristics, considering both natural runoff rivers and those influenced by dam discharges. The Long Short-Term Memory (LSTM) model, known for its superior performance in time-series forecasting, was employed. The results demonstrate high accuracy in flood level prediction, particularly within a 3-h lead time.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70123\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70123\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70123","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Prediction of Flood Level Using LSTM and Watershed Hydrological Data
Accurate flood level prediction is crucial for mitigating flood damage caused by typhoons or localized heavy rainfall. However, predicting flood levels is challenging due to changes in river environments and external factors, such as dam or weir operations. To address these challenges, this study proposes a methodology for constructing an optimal combination of input data using basic hydrological information and predicting flood levels in real time through a deep learning model. The study focuses on identifying the best input data combination tailored to each river basin's characteristics, considering both natural runoff rivers and those influenced by dam discharges. The Long Short-Term Memory (LSTM) model, known for its superior performance in time-series forecasting, was employed. The results demonstrate high accuracy in flood level prediction, particularly within a 3-h lead time.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.