作为锂离子电池极具前景的负极材料,硅掺杂硼碳氮化硼的稳定性、动力学和电化学性能:第一性原理计算

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Suresh Sampathkumar , Selvarengan Paranthaman , Liang-Yin Kuo
{"title":"作为锂离子电池极具前景的负极材料,硅掺杂硼碳氮化硼的稳定性、动力学和电化学性能:第一性原理计算","authors":"Suresh Sampathkumar ,&nbsp;Selvarengan Paranthaman ,&nbsp;Liang-Yin Kuo","doi":"10.1016/j.est.2025.118534","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional boron carbon nitride (BCN) has gained increasing attention for use in lithium-ion batteries (LIBs) due to its unique electronic properties. In this study, the effects of silicon (Si)-doping on the structural, kinetic, and electrochemical properties of BCN are investigated by density functional theory calculations. Minor Si-doping in the BCN lattice (Si-BCN) is found to alter the pore radius, which enhances Li-ion adsorption and diffusion. The Li-ion adsorption energy (<em>E</em><sub>ad</sub>) increases from −2.02 eV in pristine BCN to −2.75 eV in Si-BCN nanosheet, indicating stronger Li-ions interaction. This more negative <em>E</em><sub>ad</sub> enhances the stability of Li storage sites, while the reduced diffusion barrier (0.13 eV) facilitates efficient Li-ion transport in Si-BCN. Moreover, Si-doping leads to a reduction in the band gap to 1.12 eV, transitioning the material from semi-metallic to metallic behavior and suggesting improved electronic conductivity. The theoretical capacities are 1456 mAh<span><math><mo>∙</mo></math></span>g<sup>−1</sup> for pristine BCN and 1428 mAh<span><math><mo>∙</mo></math></span>g<sup>−1</sup> for Si-BCN. Although the capacities are comparable, the increased electronic and ionic conductivities of Si-BCN allow for faster de−/lithiation and show the possibility for faster charging/discharging Li-ion cells.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"139 ","pages":"Article 118534"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into stability, kinetic, and electrochemical performance of silicon-doped boron carbon nitride as a promising anode material for lithium-ion battery: First-principles calculations\",\"authors\":\"Suresh Sampathkumar ,&nbsp;Selvarengan Paranthaman ,&nbsp;Liang-Yin Kuo\",\"doi\":\"10.1016/j.est.2025.118534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two-dimensional boron carbon nitride (BCN) has gained increasing attention for use in lithium-ion batteries (LIBs) due to its unique electronic properties. In this study, the effects of silicon (Si)-doping on the structural, kinetic, and electrochemical properties of BCN are investigated by density functional theory calculations. Minor Si-doping in the BCN lattice (Si-BCN) is found to alter the pore radius, which enhances Li-ion adsorption and diffusion. The Li-ion adsorption energy (<em>E</em><sub>ad</sub>) increases from −2.02 eV in pristine BCN to −2.75 eV in Si-BCN nanosheet, indicating stronger Li-ions interaction. This more negative <em>E</em><sub>ad</sub> enhances the stability of Li storage sites, while the reduced diffusion barrier (0.13 eV) facilitates efficient Li-ion transport in Si-BCN. Moreover, Si-doping leads to a reduction in the band gap to 1.12 eV, transitioning the material from semi-metallic to metallic behavior and suggesting improved electronic conductivity. The theoretical capacities are 1456 mAh<span><math><mo>∙</mo></math></span>g<sup>−1</sup> for pristine BCN and 1428 mAh<span><math><mo>∙</mo></math></span>g<sup>−1</sup> for Si-BCN. Although the capacities are comparable, the increased electronic and ionic conductivities of Si-BCN allow for faster de−/lithiation and show the possibility for faster charging/discharging Li-ion cells.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"139 \",\"pages\":\"Article 118534\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25032475\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25032475","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

二维硼碳氮化物(BCN)由于其独特的电子性能在锂离子电池(LIBs)中的应用受到越来越多的关注。在本研究中,通过密度泛函理论计算研究了硅(Si)掺杂对BCN结构、动力学和电化学性能的影响。BCN晶格中少量的si掺杂(Si-BCN)改变了孔隙半径,增强了锂离子的吸附和扩散。锂离子吸附能(Ead)从原始BCN的- 2.02 eV增加到Si-BCN纳米片的- 2.75 eV,表明锂离子相互作用更强。更负的Ead增强了Li存储位点的稳定性,而降低的扩散势垒(0.13 eV)促进了Li离子在Si-BCN中的有效传输。此外,si掺杂导致带隙减小到1.12 eV,将材料从半金属行为转变为金属行为,并表明提高了电子导电性。原始BCN的理论容量为1456 mAh∙g−1,Si-BCN的理论容量为1428 mAh∙g−1。虽然容量相当,但Si-BCN增加的电子和离子电导率允许更快的脱锂化,并显示出更快的充电/放电锂离子电池的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insights into stability, kinetic, and electrochemical performance of silicon-doped boron carbon nitride as a promising anode material for lithium-ion battery: First-principles calculations

Insights into stability, kinetic, and electrochemical performance of silicon-doped boron carbon nitride as a promising anode material for lithium-ion battery: First-principles calculations
Two-dimensional boron carbon nitride (BCN) has gained increasing attention for use in lithium-ion batteries (LIBs) due to its unique electronic properties. In this study, the effects of silicon (Si)-doping on the structural, kinetic, and electrochemical properties of BCN are investigated by density functional theory calculations. Minor Si-doping in the BCN lattice (Si-BCN) is found to alter the pore radius, which enhances Li-ion adsorption and diffusion. The Li-ion adsorption energy (Ead) increases from −2.02 eV in pristine BCN to −2.75 eV in Si-BCN nanosheet, indicating stronger Li-ions interaction. This more negative Ead enhances the stability of Li storage sites, while the reduced diffusion barrier (0.13 eV) facilitates efficient Li-ion transport in Si-BCN. Moreover, Si-doping leads to a reduction in the band gap to 1.12 eV, transitioning the material from semi-metallic to metallic behavior and suggesting improved electronic conductivity. The theoretical capacities are 1456 mAhg−1 for pristine BCN and 1428 mAhg−1 for Si-BCN. Although the capacities are comparable, the increased electronic and ionic conductivities of Si-BCN allow for faster de−/lithiation and show the possibility for faster charging/discharging Li-ion cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信