基于分子动力学模拟的空间环境下聚酰亚胺热解机理及结构演化研究

Qikun Yang, Li Zhang, Shengrui Zhou, Bilal Iqbal Ayubi
{"title":"基于分子动力学模拟的空间环境下聚酰亚胺热解机理及结构演化研究","authors":"Qikun Yang,&nbsp;Li Zhang,&nbsp;Shengrui Zhou,&nbsp;Bilal Iqbal Ayubi","doi":"10.1016/j.sspwt.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>Polyimide (PI) is widely used in aerospace applications due to its excellent electrical insulation and thermal stability. However, prolonged exposure to high-temperature vacuum conditions in space can significantly compromise its structural integrity and reliability. To gain deeper insight into the pyrolysis behaviour and structural evolution of PI, this study employs molecular dynamics (MD) simulations to conduct full-scale dynamic tracking of the heating process from 300 K to 3800 K. The evolution of bond breakage, gas-phase product formation, and system free volume is monitored in real time. The results indicate that PI pyrolysis proceeds in three distinct stages: an initial induction phase, a rapid decomposition phase, and a prolonged evolution phase. Product analysis reveals that CO accounts for 47.3% of gaseous species, primarily originating from the cleavage of carbonyl groups in the imide ring; <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>O makes up 18.4%, closely related to hydroxyl radical recombination; and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>10</mn></mrow></msub></math></span> hydrocarbon fragments constitute 15.6%, reflecting deep fragmentation and molecular rearrangement. As temperature increases from 300 K to 800 K, the free volume fraction rises from 16.9% to 27.7%, indicating significant structural relaxation and diffusion pathway expansion. This work elucidates the multi-stage cooperative mechanism of PI pyrolysis at the atomic level and provides a theoretical basis for improving thermal stability and evaluating service life in aerospace environments.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"2 3","pages":"Pages 117-123"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the pyrolysis mechanism and structural evolution of polyimide under space environment based on molecular dynamics simulations\",\"authors\":\"Qikun Yang,&nbsp;Li Zhang,&nbsp;Shengrui Zhou,&nbsp;Bilal Iqbal Ayubi\",\"doi\":\"10.1016/j.sspwt.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyimide (PI) is widely used in aerospace applications due to its excellent electrical insulation and thermal stability. However, prolonged exposure to high-temperature vacuum conditions in space can significantly compromise its structural integrity and reliability. To gain deeper insight into the pyrolysis behaviour and structural evolution of PI, this study employs molecular dynamics (MD) simulations to conduct full-scale dynamic tracking of the heating process from 300 K to 3800 K. The evolution of bond breakage, gas-phase product formation, and system free volume is monitored in real time. The results indicate that PI pyrolysis proceeds in three distinct stages: an initial induction phase, a rapid decomposition phase, and a prolonged evolution phase. Product analysis reveals that CO accounts for 47.3% of gaseous species, primarily originating from the cleavage of carbonyl groups in the imide ring; <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>O makes up 18.4%, closely related to hydroxyl radical recombination; and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>10</mn></mrow></msub></math></span> hydrocarbon fragments constitute 15.6%, reflecting deep fragmentation and molecular rearrangement. As temperature increases from 300 K to 800 K, the free volume fraction rises from 16.9% to 27.7%, indicating significant structural relaxation and diffusion pathway expansion. This work elucidates the multi-stage cooperative mechanism of PI pyrolysis at the atomic level and provides a theoretical basis for improving thermal stability and evaluating service life in aerospace environments.</div></div>\",\"PeriodicalId\":101177,\"journal\":{\"name\":\"Space Solar Power and Wireless Transmission\",\"volume\":\"2 3\",\"pages\":\"Pages 117-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Solar Power and Wireless Transmission\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950104025000392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Solar Power and Wireless Transmission","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950104025000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚酰亚胺(PI)由于其优异的电绝缘性和热稳定性而广泛应用于航空航天领域。然而,长时间暴露在太空高温真空条件下会严重损害其结构完整性和可靠性。为了更深入地了解PI的热解行为和结构演变,本研究采用分子动力学(MD)模拟对300 ~ 3800 K的加热过程进行了全尺寸动态跟踪。实时监测粘结断裂、气相产物形成和系统自由体积的演变。结果表明,PI热解过程分为三个阶段:初始诱导阶段、快速分解阶段和延长演化阶段。产物分析表明,CO占气体组分的47.3%,主要来源于亚胺环上羰基的裂解;H2O占18.4%,与羟基自由基重组密切相关;C5-C10烃碎片占15.6%,反映了深度断裂和分子重排。当温度从300 K升高到800 K时,自由体积分数从16.9%上升到27.7%,表明结构松弛和扩散路径扩展明显。本研究阐明了PI在原子水平上的多阶段协同热解机理,为提高PI在航天环境中的热稳定性和评价其使用寿命提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the pyrolysis mechanism and structural evolution of polyimide under space environment based on molecular dynamics simulations
Polyimide (PI) is widely used in aerospace applications due to its excellent electrical insulation and thermal stability. However, prolonged exposure to high-temperature vacuum conditions in space can significantly compromise its structural integrity and reliability. To gain deeper insight into the pyrolysis behaviour and structural evolution of PI, this study employs molecular dynamics (MD) simulations to conduct full-scale dynamic tracking of the heating process from 300 K to 3800 K. The evolution of bond breakage, gas-phase product formation, and system free volume is monitored in real time. The results indicate that PI pyrolysis proceeds in three distinct stages: an initial induction phase, a rapid decomposition phase, and a prolonged evolution phase. Product analysis reveals that CO accounts for 47.3% of gaseous species, primarily originating from the cleavage of carbonyl groups in the imide ring; H2O makes up 18.4%, closely related to hydroxyl radical recombination; and C5-C10 hydrocarbon fragments constitute 15.6%, reflecting deep fragmentation and molecular rearrangement. As temperature increases from 300 K to 800 K, the free volume fraction rises from 16.9% to 27.7%, indicating significant structural relaxation and diffusion pathway expansion. This work elucidates the multi-stage cooperative mechanism of PI pyrolysis at the atomic level and provides a theoretical basis for improving thermal stability and evaluating service life in aerospace environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信