Fatima El Hiri , Zouhir Mansouri , Abedellah El Kenz , Abdelilah Benyoussef , Omar Mounkachi
{"title":"石墨烯作为锂离子电池应用基准材料的DFT和KMC研究","authors":"Fatima El Hiri , Zouhir Mansouri , Abedellah El Kenz , Abdelilah Benyoussef , Omar Mounkachi","doi":"10.1016/j.susc.2025.122862","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, many studies have explored modified or functionalized graphene, such as doped graphene or graphene composites, to enhance Li-ion battery performance. In contrast, our study focuses on pristine graphene to establish a fundamental understanding of its intrinsic properties, combining density functional theory (DFT) and kinetic Monte Carlo (KMC) simulations. This approach provides critical benchmarks for future material design. DFT reveals that lithium preferentially adsorbs at hollow site with a strong binding energy (−1.9 eV), inducing a semi-metal-to-metal transition. The material exhibits a high theoretical capacity (744 mAh/g), a moderate average voltage (0.78 V), and a low Li diffusion barrier (0.31 eV). KMC simulations further quantify the concentration and temperature dependent Li diffusivity, yielding the empirical relation <span><math><msub><mi>D</mi><mrow><mi>L</mi><mi>i</mi></mrow></msub></math></span>(<span><math><msub><mi>C</mi><mrow><mi>L</mi><mi>i</mi></mrow></msub></math></span>,T) for Li concentrations in the range [0.01–0.1]. At room temperature, the calculated <span><math><msub><mi>D</mi><mrow><mi>L</mi><mi>i</mi></mrow></msub></math></span> values span 2 × 10<sup>−9</sup> to 5 × 10<sup>−8</sup> cm²/s, showing excellent agreement with experimental data.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"764 ","pages":"Article 122862"},"PeriodicalIF":1.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT and KMC study of graphene as a benchmark material for Li-Ion battery applications\",\"authors\":\"Fatima El Hiri , Zouhir Mansouri , Abedellah El Kenz , Abdelilah Benyoussef , Omar Mounkachi\",\"doi\":\"10.1016/j.susc.2025.122862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, many studies have explored modified or functionalized graphene, such as doped graphene or graphene composites, to enhance Li-ion battery performance. In contrast, our study focuses on pristine graphene to establish a fundamental understanding of its intrinsic properties, combining density functional theory (DFT) and kinetic Monte Carlo (KMC) simulations. This approach provides critical benchmarks for future material design. DFT reveals that lithium preferentially adsorbs at hollow site with a strong binding energy (−1.9 eV), inducing a semi-metal-to-metal transition. The material exhibits a high theoretical capacity (744 mAh/g), a moderate average voltage (0.78 V), and a low Li diffusion barrier (0.31 eV). KMC simulations further quantify the concentration and temperature dependent Li diffusivity, yielding the empirical relation <span><math><msub><mi>D</mi><mrow><mi>L</mi><mi>i</mi></mrow></msub></math></span>(<span><math><msub><mi>C</mi><mrow><mi>L</mi><mi>i</mi></mrow></msub></math></span>,T) for Li concentrations in the range [0.01–0.1]. At room temperature, the calculated <span><math><msub><mi>D</mi><mrow><mi>L</mi><mi>i</mi></mrow></msub></math></span> values span 2 × 10<sup>−9</sup> to 5 × 10<sup>−8</sup> cm²/s, showing excellent agreement with experimental data.</div></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"764 \",\"pages\":\"Article 122862\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602825001682\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001682","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
DFT and KMC study of graphene as a benchmark material for Li-Ion battery applications
In recent years, many studies have explored modified or functionalized graphene, such as doped graphene or graphene composites, to enhance Li-ion battery performance. In contrast, our study focuses on pristine graphene to establish a fundamental understanding of its intrinsic properties, combining density functional theory (DFT) and kinetic Monte Carlo (KMC) simulations. This approach provides critical benchmarks for future material design. DFT reveals that lithium preferentially adsorbs at hollow site with a strong binding energy (−1.9 eV), inducing a semi-metal-to-metal transition. The material exhibits a high theoretical capacity (744 mAh/g), a moderate average voltage (0.78 V), and a low Li diffusion barrier (0.31 eV). KMC simulations further quantify the concentration and temperature dependent Li diffusivity, yielding the empirical relation (,T) for Li concentrations in the range [0.01–0.1]. At room temperature, the calculated values span 2 × 10−9 to 5 × 10−8 cm²/s, showing excellent agreement with experimental data.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.