双离子导电聚合物接枝导电炭黑作为粘结剂,实现了LiFePO4阴极的快速充放电和稳定循环

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Meichun He , Yanmeng Zhang , Bing Sun , Haokun Yan , Dongmei Zhang , Cunyuan Pei , Pengju Li , Shibing Ni
{"title":"双离子导电聚合物接枝导电炭黑作为粘结剂,实现了LiFePO4阴极的快速充放电和稳定循环","authors":"Meichun He ,&nbsp;Yanmeng Zhang ,&nbsp;Bing Sun ,&nbsp;Haokun Yan ,&nbsp;Dongmei Zhang ,&nbsp;Cunyuan Pei ,&nbsp;Pengju Li ,&nbsp;Shibing Ni","doi":"10.1016/j.est.2025.118796","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium iron phosphate (LFP) cathodes face challenges in rate capability and cycling due to their low electronic/ionic conductivity, exacerbated by conventional polyvinylidene fluoride (PVDF) binders with insulating properties and weak adhesion. This work presents a water-soluble multifunctional binder prepared by the Bi-ionic conducting polymer grafting conductive acetylene black to address these bottlenecks. The 3D crosslinked structure facilitates the molecular entanglement, as well as the formation of unobstructed lithium-ion pathways (the ethylene oxide (EO) units and the lithiated ionomers), significantly enhancing the adhesion and Li<sup>+</sup> ion diffusion of binder. Furthermore, the well dispersed acetylene black as the nodes in the crosslinking networks improves the conductivity of integrative LFP electrodes. As a result, the LFP cathode delivers a high capacity of 133.0 mA h g<sup>−1</sup> at 2C after 500 cycles with 89.9 % capacity retention. Even at 7C, the capacity of 110.6 mA h g<sup>−1</sup> can be obtained in LFP cathode, exhibiting outstanding rate performance. In addition, Li<sup>+</sup> diffusion coefficient of 5.10 × 10<sup>−8</sup> cm<sup>2</sup> s<sup>−1</sup> achieved in LFP with the modified binder is twice that of conventional PVDF-based electrodes. This work underscores the critical role of ion/electron-conductive binders in overcoming the trade-offs between conductivity, stability, and sustainability, providing a strategy for high-performance LFP cathodes in next-generation lithium-ion batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"139 ","pages":"Article 118796"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-ionic conducting polymer grafting conductive carbon black as binders enable fast charging/discharging and stable cycling of LiFePO4 cathodes\",\"authors\":\"Meichun He ,&nbsp;Yanmeng Zhang ,&nbsp;Bing Sun ,&nbsp;Haokun Yan ,&nbsp;Dongmei Zhang ,&nbsp;Cunyuan Pei ,&nbsp;Pengju Li ,&nbsp;Shibing Ni\",\"doi\":\"10.1016/j.est.2025.118796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium iron phosphate (LFP) cathodes face challenges in rate capability and cycling due to their low electronic/ionic conductivity, exacerbated by conventional polyvinylidene fluoride (PVDF) binders with insulating properties and weak adhesion. This work presents a water-soluble multifunctional binder prepared by the Bi-ionic conducting polymer grafting conductive acetylene black to address these bottlenecks. The 3D crosslinked structure facilitates the molecular entanglement, as well as the formation of unobstructed lithium-ion pathways (the ethylene oxide (EO) units and the lithiated ionomers), significantly enhancing the adhesion and Li<sup>+</sup> ion diffusion of binder. Furthermore, the well dispersed acetylene black as the nodes in the crosslinking networks improves the conductivity of integrative LFP electrodes. As a result, the LFP cathode delivers a high capacity of 133.0 mA h g<sup>−1</sup> at 2C after 500 cycles with 89.9 % capacity retention. Even at 7C, the capacity of 110.6 mA h g<sup>−1</sup> can be obtained in LFP cathode, exhibiting outstanding rate performance. In addition, Li<sup>+</sup> diffusion coefficient of 5.10 × 10<sup>−8</sup> cm<sup>2</sup> s<sup>−1</sup> achieved in LFP with the modified binder is twice that of conventional PVDF-based electrodes. This work underscores the critical role of ion/electron-conductive binders in overcoming the trade-offs between conductivity, stability, and sustainability, providing a strategy for high-performance LFP cathodes in next-generation lithium-ion batteries.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"139 \",\"pages\":\"Article 118796\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25035091\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25035091","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

磷酸铁锂(LFP)阴极由于其电子/离子电导率低,在倍率能力和循环方面面临挑战,而传统的聚偏氟乙烯(PVDF)粘合剂具有绝缘性能和弱附着力,使其雪上加霜。本工作提出了一种水溶性多功能粘合剂,通过双离子导电聚合物接枝导电乙炔黑来解决这些瓶颈。三维交联结构有利于分子纠缠,形成畅通的锂离子通道(环氧乙烷(EO)单元和锂化离聚体),显著增强粘结剂的粘附和Li+离子扩散。此外,分散良好的乙炔黑作为交联网络中的节点,提高了集成LFP电极的导电性。结果表明,经过500次循环后,LFP阴极在2C下提供了133.0 mA h g−1的高容量,容量保持率为89.9%。即使在7C时,LFP阴极也能获得110.6 mA h g−1的容量,具有出色的倍率性能。此外,LFP中Li+的扩散系数为5.10 × 10−8 cm2 s−1,是传统pvdf电极的两倍。这项工作强调了离子/电子导电粘合剂在克服导电性、稳定性和可持续性之间的权衡方面的关键作用,为下一代锂离子电池的高性能LFP阴极提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bi-ionic conducting polymer grafting conductive carbon black as binders enable fast charging/discharging and stable cycling of LiFePO4 cathodes

Bi-ionic conducting polymer grafting conductive carbon black as binders enable fast charging/discharging and stable cycling of LiFePO4 cathodes
Lithium iron phosphate (LFP) cathodes face challenges in rate capability and cycling due to their low electronic/ionic conductivity, exacerbated by conventional polyvinylidene fluoride (PVDF) binders with insulating properties and weak adhesion. This work presents a water-soluble multifunctional binder prepared by the Bi-ionic conducting polymer grafting conductive acetylene black to address these bottlenecks. The 3D crosslinked structure facilitates the molecular entanglement, as well as the formation of unobstructed lithium-ion pathways (the ethylene oxide (EO) units and the lithiated ionomers), significantly enhancing the adhesion and Li+ ion diffusion of binder. Furthermore, the well dispersed acetylene black as the nodes in the crosslinking networks improves the conductivity of integrative LFP electrodes. As a result, the LFP cathode delivers a high capacity of 133.0 mA h g−1 at 2C after 500 cycles with 89.9 % capacity retention. Even at 7C, the capacity of 110.6 mA h g−1 can be obtained in LFP cathode, exhibiting outstanding rate performance. In addition, Li+ diffusion coefficient of 5.10 × 10−8 cm2 s−1 achieved in LFP with the modified binder is twice that of conventional PVDF-based electrodes. This work underscores the critical role of ion/electron-conductive binders in overcoming the trade-offs between conductivity, stability, and sustainability, providing a strategy for high-performance LFP cathodes in next-generation lithium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信