层叠纳米cuzn5在无枝晶钠金属电池中电导率多层增强及阳极集流器表面工程研究

IF 9.4 1区 工程技术 Q1 ENERGY & FUELS
Wanzhen Zhang , Ling Suo , Jing Wen , Xiafang Ji , Jinwang Huang , Yuxiang Zhao , Yulong Qian , Caili Suo , Hongbo Zhang , Yue Ma , Fayan Zhu , Bo Zhang , Wu Li
{"title":"层叠纳米cuzn5在无枝晶钠金属电池中电导率多层增强及阳极集流器表面工程研究","authors":"Wanzhen Zhang ,&nbsp;Ling Suo ,&nbsp;Jing Wen ,&nbsp;Xiafang Ji ,&nbsp;Jinwang Huang ,&nbsp;Yuxiang Zhao ,&nbsp;Yulong Qian ,&nbsp;Caili Suo ,&nbsp;Hongbo Zhang ,&nbsp;Yue Ma ,&nbsp;Fayan Zhu ,&nbsp;Bo Zhang ,&nbsp;Wu Li","doi":"10.1016/j.energy.2025.138809","DOIUrl":null,"url":null,"abstract":"<div><div>Interfacial instability caused by Na dendrite growth on the anode hinders the further development of sodium metal batteries. To prohibit dendrite growth, constructing anode current collectors with excellent conductivity and surface-regularizing capability is an effective strategy. Here, we report a layer-by-layer stacking design of CuZn<sub>5</sub> layer on an Al-based anode current collector. The densely stacked CuZn<sub>5</sub> hexagonal nanosheets, working in synergy with the Al substrate and Cu surface layer, significantly enhance the conductivity (50.63 × 10<sup>6</sup> S m<sup>−1</sup>) through size-confinement, tunnelling effect, ordered nanostructure, built-in electric field, and surface engineering. This enables fast electron supply/collection for uniform Na plating. Moreover, the layer-by-layer stacked CuZn<sub>5</sub> nanosheets induce Cu plating into a rough mountain-like structure with amounts of surface defects, providing abundant active sites for rapid formation of NaF-rich solid electrolyte interphase, which also helps uniform Na plating. The assembled symmetric cell of Na@Cu/CuZn<sub>5</sub>@Al exhibits low polarization from 0.5 to 5 mA cm<sup>−2</sup>, and cycles for over 2000 h. The half cell maintains 98 % CE after 500 cycles, whereas cells using Na‖Al and Na‖Cu all show pronounced CE decay within 110 cycles at 1 mA cm<sup>−2</sup>, 1 mAh cm<sup>−2</sup>. This work introduces a strategy for fabricating a high-performance, lightweight anode current collector for dendrite-free sodium metal batteries.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"338 ","pages":"Article 138809"},"PeriodicalIF":9.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer-by-layer stacked nano-CuZn5 for conductivity multi-enhancement and surface engineering of anode current collector in dendrite-free sodium metal batteries\",\"authors\":\"Wanzhen Zhang ,&nbsp;Ling Suo ,&nbsp;Jing Wen ,&nbsp;Xiafang Ji ,&nbsp;Jinwang Huang ,&nbsp;Yuxiang Zhao ,&nbsp;Yulong Qian ,&nbsp;Caili Suo ,&nbsp;Hongbo Zhang ,&nbsp;Yue Ma ,&nbsp;Fayan Zhu ,&nbsp;Bo Zhang ,&nbsp;Wu Li\",\"doi\":\"10.1016/j.energy.2025.138809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interfacial instability caused by Na dendrite growth on the anode hinders the further development of sodium metal batteries. To prohibit dendrite growth, constructing anode current collectors with excellent conductivity and surface-regularizing capability is an effective strategy. Here, we report a layer-by-layer stacking design of CuZn<sub>5</sub> layer on an Al-based anode current collector. The densely stacked CuZn<sub>5</sub> hexagonal nanosheets, working in synergy with the Al substrate and Cu surface layer, significantly enhance the conductivity (50.63 × 10<sup>6</sup> S m<sup>−1</sup>) through size-confinement, tunnelling effect, ordered nanostructure, built-in electric field, and surface engineering. This enables fast electron supply/collection for uniform Na plating. Moreover, the layer-by-layer stacked CuZn<sub>5</sub> nanosheets induce Cu plating into a rough mountain-like structure with amounts of surface defects, providing abundant active sites for rapid formation of NaF-rich solid electrolyte interphase, which also helps uniform Na plating. The assembled symmetric cell of Na@Cu/CuZn<sub>5</sub>@Al exhibits low polarization from 0.5 to 5 mA cm<sup>−2</sup>, and cycles for over 2000 h. The half cell maintains 98 % CE after 500 cycles, whereas cells using Na‖Al and Na‖Cu all show pronounced CE decay within 110 cycles at 1 mA cm<sup>−2</sup>, 1 mAh cm<sup>−2</sup>. This work introduces a strategy for fabricating a high-performance, lightweight anode current collector for dendrite-free sodium metal batteries.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"338 \",\"pages\":\"Article 138809\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225044512\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225044512","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

阳极上Na枝晶生长引起的界面不稳定性阻碍了钠金属电池的进一步发展。为了防止枝晶生长,构建具有优异导电性和表面规整能力的阳极集流器是一种有效的策略。本文报道了一种在铝基阳极集流器上逐层叠加CuZn5层的设计。通过尺寸限制、隧道效应、有序纳米结构、内置电场和表面工程等因素,通过与Al衬底和Cu表面层协同作用,使CuZn5六方纳米片的电导率显著提高(50.63 × 106 S m−1)。这使得快速电子供应/收集均匀的镀钠。此外,层层堆叠的CuZn5纳米片诱导镀Cu形成粗糙的山状结构,表面存在大量缺陷,为富naf固体电解质界面的快速形成提供了丰富的活性位点,也有助于均匀镀Na。组装的Na@Cu/CuZn5@Al对称电池在0.5至5 mA cm - 2范围内表现出低极化,循环超过2000小时。半电池在500次循环后保持98%的CE,而使用Na‖Al和Na‖Cu的电池在1ma cm - 2和1mah cm - 2下的110次循环内都显示出明显的CE衰减。本工作介绍了一种用于无枝晶钠金属电池的高性能、轻质阳极集流器的制造策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Layer-by-layer stacked nano-CuZn5 for conductivity multi-enhancement and surface engineering of anode current collector in dendrite-free sodium metal batteries

Layer-by-layer stacked nano-CuZn5 for conductivity multi-enhancement and surface engineering of anode current collector in dendrite-free sodium metal batteries
Interfacial instability caused by Na dendrite growth on the anode hinders the further development of sodium metal batteries. To prohibit dendrite growth, constructing anode current collectors with excellent conductivity and surface-regularizing capability is an effective strategy. Here, we report a layer-by-layer stacking design of CuZn5 layer on an Al-based anode current collector. The densely stacked CuZn5 hexagonal nanosheets, working in synergy with the Al substrate and Cu surface layer, significantly enhance the conductivity (50.63 × 106 S m−1) through size-confinement, tunnelling effect, ordered nanostructure, built-in electric field, and surface engineering. This enables fast electron supply/collection for uniform Na plating. Moreover, the layer-by-layer stacked CuZn5 nanosheets induce Cu plating into a rough mountain-like structure with amounts of surface defects, providing abundant active sites for rapid formation of NaF-rich solid electrolyte interphase, which also helps uniform Na plating. The assembled symmetric cell of Na@Cu/CuZn5@Al exhibits low polarization from 0.5 to 5 mA cm−2, and cycles for over 2000 h. The half cell maintains 98 % CE after 500 cycles, whereas cells using Na‖Al and Na‖Cu all show pronounced CE decay within 110 cycles at 1 mA cm−2, 1 mAh cm−2. This work introduces a strategy for fabricating a high-performance, lightweight anode current collector for dendrite-free sodium metal batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信