铅铑掺杂GaNNT对锂电池热失控气体的吸附和气敏性质:DFT研究

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Fan Yu , Hong Liu , Hu Yuan , Wu Jiang , Deqin He , Mingyue Li , Keman Yin , Bingning Wang , Xueqiang Qi
{"title":"铅铑掺杂GaNNT对锂电池热失控气体的吸附和气敏性质:DFT研究","authors":"Fan Yu ,&nbsp;Hong Liu ,&nbsp;Hu Yuan ,&nbsp;Wu Jiang ,&nbsp;Deqin He ,&nbsp;Mingyue Li ,&nbsp;Keman Yin ,&nbsp;Bingning Wang ,&nbsp;Xueqiang Qi","doi":"10.1016/j.surfin.2025.107822","DOIUrl":null,"url":null,"abstract":"<div><div>The gas-sensitive technology for detecting thermal runaway gases during lithium-ion battery thermal runaway is feasible. We performed DFT calculations to analyze the adsorption energy (<em>E<sub>ads</sub></em>), density of states (DOS), band structure, differential charge density (DCD), and frontier molecular orbitals of Pb and Rh-doped GaN nanotubes (M-GaNNT) with respect to four main gases (CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub>). Rh-GaNNT exhibits the most substantial band gap modification, with an average change of 139.9 %, while Pb-GaNNT shows an average alteration of 28.8 %. By analyzing <em>E<sub>ads</sub></em>, sensitivity response, and recovery time of M-GaNNT, we predicted its potential applications in gas-sensing devices and adsorbents. Notably, Pb-GaNNT demonstrates exceptional CO detection performance at 398 K, with an ultra-fast recovery time of 0.13 s, strong adsorption energy of −1.232 eV, and remarkable sensitivity of 2.44 × 10⁷. Similarly, Rh-GaNNT performs outstanding CH<sub>4</sub> sensing characteristics at 498 K, featuring rapid recovery (<em>τ</em> = 0.43 s), substantial adsorption energy (<em>E<sub>ads</sub></em> = −1.150 eV), and extremely high sensitivity (<em>SR</em> = 1.19 × 10¹⁹). Furthermore, the materials exhibit superior gas removal efficiency under other temperatures conditions for all four target gases. These findings highlight the potential of metal-doped GaNNTs as high-performance sensing materials for lithium-ion battery safety monitoring systems.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"75 ","pages":"Article 107822"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption and gas-sensitive properties of Pb and Rh doped GaNNT for lithium battery thermal runaway gases: A DFT study\",\"authors\":\"Fan Yu ,&nbsp;Hong Liu ,&nbsp;Hu Yuan ,&nbsp;Wu Jiang ,&nbsp;Deqin He ,&nbsp;Mingyue Li ,&nbsp;Keman Yin ,&nbsp;Bingning Wang ,&nbsp;Xueqiang Qi\",\"doi\":\"10.1016/j.surfin.2025.107822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The gas-sensitive technology for detecting thermal runaway gases during lithium-ion battery thermal runaway is feasible. We performed DFT calculations to analyze the adsorption energy (<em>E<sub>ads</sub></em>), density of states (DOS), band structure, differential charge density (DCD), and frontier molecular orbitals of Pb and Rh-doped GaN nanotubes (M-GaNNT) with respect to four main gases (CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub>). Rh-GaNNT exhibits the most substantial band gap modification, with an average change of 139.9 %, while Pb-GaNNT shows an average alteration of 28.8 %. By analyzing <em>E<sub>ads</sub></em>, sensitivity response, and recovery time of M-GaNNT, we predicted its potential applications in gas-sensing devices and adsorbents. Notably, Pb-GaNNT demonstrates exceptional CO detection performance at 398 K, with an ultra-fast recovery time of 0.13 s, strong adsorption energy of −1.232 eV, and remarkable sensitivity of 2.44 × 10⁷. Similarly, Rh-GaNNT performs outstanding CH<sub>4</sub> sensing characteristics at 498 K, featuring rapid recovery (<em>τ</em> = 0.43 s), substantial adsorption energy (<em>E<sub>ads</sub></em> = −1.150 eV), and extremely high sensitivity (<em>SR</em> = 1.19 × 10¹⁹). Furthermore, the materials exhibit superior gas removal efficiency under other temperatures conditions for all four target gases. These findings highlight the potential of metal-doped GaNNTs as high-performance sensing materials for lithium-ion battery safety monitoring systems.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"75 \",\"pages\":\"Article 107822\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023025020747\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025020747","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用气敏技术检测锂离子电池热失控过程中的热失控气体是可行的。通过DFT计算分析了Pb和rh掺杂GaN纳米管(M-GaNNT)在四种主要气体(CH4, CO, CO2, H2)下的吸附能(Eads)、态密度(DOS)、能带结构、差分电荷密度(DCD)和前沿分子轨道。Rh-GaNNT表现出最明显的带隙变化,平均变化幅度为139.9%,而Pb-GaNNT的平均变化幅度为28.8%。通过分析M-GaNNT的Eads、灵敏度响应和恢复时间,我们预测了其在气敏器件和吸附剂中的潜在应用。值得注意的是,Pb-GaNNT在398 K下表现出出色的CO检测性能,具有0.13 s的超快速恢复时间,- 1.232 eV的强吸附能和2.44 × 10⁷的显着灵敏度。同样,Rh-GaNNT在498 K下具有出色的CH4传感特性,具有快速回收(τ = 0.43 s),大量吸附能(Eads = - 1.150 eV)和极高的灵敏度(SR = 1.19 × 10¹⁹)。此外,在其他温度条件下,该材料对所有四种目标气体都表现出优异的气体去除效率。这些发现突出了金属掺杂GaNNTs作为锂离子电池安全监测系统的高性能传感材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adsorption and gas-sensitive properties of Pb and Rh doped GaNNT for lithium battery thermal runaway gases: A DFT study

Adsorption and gas-sensitive properties of Pb and Rh doped GaNNT for lithium battery thermal runaway gases: A DFT study
The gas-sensitive technology for detecting thermal runaway gases during lithium-ion battery thermal runaway is feasible. We performed DFT calculations to analyze the adsorption energy (Eads), density of states (DOS), band structure, differential charge density (DCD), and frontier molecular orbitals of Pb and Rh-doped GaN nanotubes (M-GaNNT) with respect to four main gases (CH4, CO, CO2, H2). Rh-GaNNT exhibits the most substantial band gap modification, with an average change of 139.9 %, while Pb-GaNNT shows an average alteration of 28.8 %. By analyzing Eads, sensitivity response, and recovery time of M-GaNNT, we predicted its potential applications in gas-sensing devices and adsorbents. Notably, Pb-GaNNT demonstrates exceptional CO detection performance at 398 K, with an ultra-fast recovery time of 0.13 s, strong adsorption energy of −1.232 eV, and remarkable sensitivity of 2.44 × 10⁷. Similarly, Rh-GaNNT performs outstanding CH4 sensing characteristics at 498 K, featuring rapid recovery (τ = 0.43 s), substantial adsorption energy (Eads = −1.150 eV), and extremely high sensitivity (SR = 1.19 × 10¹⁹). Furthermore, the materials exhibit superior gas removal efficiency under other temperatures conditions for all four target gases. These findings highlight the potential of metal-doped GaNNTs as high-performance sensing materials for lithium-ion battery safety monitoring systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信